refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 37 results
Sort by

Filters

Technology

Platform

accession-icon GSE65682
Genome-wide blood transcriptional profiling in critically ill patients - MARS consortium
  • organism-icon Homo sapiens
  • sample-icon 802 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

The host response in critically ill patients with sepsis, septic shock remains poorly defined. Considerable research has been conducted to accurately distinguish patients with sepsis from those with non-infectious causes of disease. Technological innovations have positioned systems biology at the forefront of biomarker discovery. Analysis of the whole-blood leukocyte transcriptome enables the assessment of thousands of molecular signals beyond simply measuring several proteins in plasma, which for use as biomarkers is important since combinations of biomarkers likely provide more diagnostic accuracy than the measurement of single ones or a few. Evidence suggests that genome-wide transcriptional profiling of blood leukocytes can assist in differentiating between infection and non-infectious causes of severe disease. Of importance, RNA biomarkers have the potential advantage that they can be measured reliably in rapid quantitative reverse transcriptase polymerase chain reaction (qRT-PCR)-based point of care tests.

Publication Title

A molecular biomarker to diagnose community-acquired pneumonia on intensive care unit admission.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE74224
Discrimination of SIRS from Sepsis in Critically Ill Adults
  • organism-icon Homo sapiens
  • sample-icon 105 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Background: Systemic inflammation is a whole body reaction that can have an infection-positive (i.e. sepsis) or infection-negative origin. It is important to distinguish between septic and non-septic presentations early and reliably, because this has significant therapeutic implications for critically ill patients. We hypothesized that a molecular classifier based on a small number of RNAs expressed in peripheral blood could be discovered that would: 1) determine which patients with systemic inflammation had sepsis; 2) be robust across independent patient cohorts; 3) be insensitive to disease severity; and 4) provide diagnostic utility. The overall goal of this study was to identify and validate such a molecular classifier. Methods and Findings: We conducted an observational, non-interventional study of adult patients recruited from tertiary intensive care units (ICU). Biomarker discovery was conducted with an Australian cohort (n = 105) consisting of sepsis patients and post -surgical patients with infection-negative systemic inflammation. Using this cohort, a four-gene classifier consisting of a combination of CEACAM4, LAMP1, PLA2G7 and PLAC8 RNA biomarkers was identified. This classifier, designated SeptiCyte Lab, was externally validated using RT-qPCR and receiver operating characteristic (ROC) curve analysis in five cohorts (n = 345) from the Netherlands. Cohort 1 (n=59) consisted of unambiguous septic cases and infection-negative systemic inflammation controls; SeptiCyte Lab gave an area under curve (AUC) of 0.96 (95% CI: 0.91-1.00). ROC analysis of a more heterogeneous group of patients (Cohorts 2-5; 249 patients after excluding 37 patients with infection likelihood possible) gave an AUC of 0.89 (95% CI: 0.85-0.93). Disease severity, as measured by Sequential Organ Failure Assessment (SOFA) score or the Acute Physiology and Chronic Health Evaluation (APACHE) IV score, was not a significant confounding variable. The diagnostic utility o f SeptiCyte Lab was evaluated by comparison to various clinical and laboratory parameters that would be available to a clinician within 24 hours of ICU admission. SeptiCyte Lab was significantly better at differentiating sepsis from infection-negative systemic inflammation than all tested parameters, both singly and in various logistic combinations. SeptiCyte Lab more than halved the diagnostic error rate compared to PCT in all tested cohorts or cohort combinations. Conclusions: SeptiCyte Lab is a rapid molecular assay that may be clinically useful in the management of ICU patients with systemic inflammation.

Publication Title

A Molecular Host Response Assay to Discriminate Between Sepsis and Infection-Negative Systemic Inflammation in Critically Ill Patients: Discovery and Validation in Independent Cohorts.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE19510
Transcriptional response of normal human lung WI-38 fibroblasts to benzo[a]pyrene diol epoxide: a dose-response study
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Cellular responses to carcinogens are typically studied in transformed cell lines, which do not reflect the physiological status of normal tissues. To address this question, we have characterized the transcriptional program and cellular responses of normal human lung WI-38 fibroblasts upon exposure to the ultimate carcinogen benzo[a]pyrene diol epoxide (BPDE). Exposure to BPDE induces a strong inflammatory response in WI-38 primary fibroblasts. Whole-genome microarray analysis shows induction of several genes related to the production of inflammatory factors, including those that encode interleukins (ILs), growth factors, and enzymes related to prostaglandin synthesis and signaling. This is the first demonstration that a strong inflammatory response is triggered in primary fibroblasts in response to a reactive diol epoxide derived from a polycyclic aromatic hydrocarbon.

Publication Title

Benzo[a]pyrene diol epoxide stimulates an inflammatory response in normal human lung fibroblasts through a p53 and JNK mediated pathway.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE61930
SaOS-2 transfected with CD99 in differentiation medium for 14 days
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Integrated approaches to miRNAs target definition: time-series analysis in an osteosarcoma differentiative model.

Sample Metadata Fields

Specimen part, Cell line, Time

View Samples
accession-icon GSE61928
SaOS-2 transfected with CD99 in differentiation medium for 14 days [total RNA]
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We explored the transcriptional modification induced by CD99 transfection in the osteosarcoma cell lines SaOS-2 after 0, 7 and 14 days in differentiation medium.

Publication Title

Integrated approaches to miRNAs target definition: time-series analysis in an osteosarcoma differentiative model.

Sample Metadata Fields

Specimen part, Cell line, Time

View Samples
accession-icon GSE34917
IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid progenitors
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid mouse progenitors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34892
IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid progenitors (Affymetrix).
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

While most blood lineages are assumed to mature through a single cellular and developmental route downstream of hematopoietic stem cells (HSCs), dendritic cells (DCs) can be derived from both myeloid and lymphoid progenitors in vivo. To determine how distinct progenitors can generate similar downstream lineages, we examined the transcriptional changes that accompany loss of in vivo myeloid potential as common myeloid progenitors (CMPs) differentiate into common dendritic cell progenitors (CDPs), and as lymphoid-primed multipotent progenitors (LMPPs) differentiate into all lymphoid progenitors (ALPs). Microarray studies revealed that Interferon regulatory factor 8 (IRF-8) expression increased during each of these transitions. Competitive reconstitutions using Irf8-/- bone marrow demonstrated cell-intrinsic defects in the formation of CDPs and all splenic dendritic cell subsets. Irf8-/- CMPs and, unexpectedly, Irf8-/- ALPs produced more neutrophils in vivo than their wild type counterparts at the expense of DCs. Retroviral expression of IRF-8 in multiple progenitors led to reduced neutrophil production and increased numbers of DCs, even in the granulocyte-macrophage progenitor (GMP), which does not normally possess conventional DC potential. These data suggest that IRF-8 represses a neutrophil module of development and promotes convergent DC development from multiple lymphoid and myeloid progenitors autonomously of cellular context.

Publication Title

IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid mouse progenitors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE2565
Phosgene exposure in the mouse lung
  • organism-icon Mus musculus
  • sample-icon 96 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Carbonyl chloride (phosgene) is a toxic industrial compound (TIC) widely used in industry for the production of synthetic products, such as polyfoam rubber, plastics, and dyes. Exposure to phosgene results in a latent (1-24 hr), potentially life-threatening pulmonary edema and irreversible acute lung injury. A genomic approach was utilized to investigate the molecular mechanism of phosgene-induced lung injury. CD-1 male mice were exposed whole-body to either air or a concentration x time (c x t) amount of 32 mg/m3 (8 ppm) phosgene for 20 min (640 mg x min/m3). Lung tissue was collected from air- or phosgene-exposed mice at 0.5, 1, 4, 8, 12, 24, 48, and 72 hr post-exposure. RNA was extracted from the lung and used as starting material for the probing of oligonucleotide microarrays to determine changes in gene expression following phosgene exposure. The data were analyzed using principal component analysis (PCA) to determine the greatest sources of data variability. A three-way analysis of variance (ANOVA) based on exposure, time, and sample was performed to identify the genes most significantly changed as a result of phosgene exposure. These genes were rank ordered by p-values and categorized based on molecular function and biological process. Some of the most significant changes in gene expression reflect changes in glutathione synthesis and redox regulation of the cell, including upregulation of glutathione S-transferase alpha-2, glutathione peroxidase 2, and glutamate-cysteine ligase, catalytic subunit (also known as -glutamyl cysteine synthetase). This is in agreement with previous observations describing changes in redox enzyme activity after phosgene exposure. We are also investigating other pathways that are responsive to phosgene exposure to identify mechanisms of toxicity and potential therapeutic targets.

Publication Title

Genomic analysis of murine pulmonary tissue following carbonyl chloride inhalation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE73088
The Gene Expression Profile of Lung Tissue Following Sulfur Mustard Inhalation Exposure in Large Anesthetized Swine
  • organism-icon Sus scrofa
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

Sulfur mustard (HD) is a vesicating agent that targets the eyes, skin, and lungs, producing skin burns, conjunctivitis, and compromised respiratory function.

Publication Title

Acute Gene Expression Profile of Lung Tissue Following Sulfur Mustard Inhalation Exposure in Large Anesthetized Swine.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE15481
Gene expression data from AP-2 silenced MCF-7 cells
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Overexpression of the AP-2 transcription factor in breast tumours has been identified as an independent predictor of poor outcome and failure of hormone therapy, even in ER positive, ErbB2 negative tumours; markers of a more favourable prognosis. To understand further the role of AP-2 in breast carcinoma, we have used an RNA interference and gene expression profiling strategy using the MCF-7 cell line as a model for ER positive, ErbB2 negative tumours with AP-2 overexpression.

Publication Title

AP-2gamma promotes proliferation in breast tumour cells by direct repression of the CDKN1A gene.

Sample Metadata Fields

Cell line

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact