refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 51 results
Sort by

Filters

Technology

Platform

accession-icon GSE6751
Expression profiles of peripheral blood monocytes in periodontal therapy
  • organism-icon Homo sapiens
  • sample-icon 59 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Periodontal infections have been associated with systemic inflammation and risk for atherosclerosis and vascular disease. We investigated the effects of comprehensive periodontal therapy on gene expression of peripheral blood monocytes. Approximately 1/3 of the patients showed substantial changes in expression in genes relevant to innate immunity, apoptosis, and cell signaling. We concluded that periodontal therapy may alter monocytic gene expression in a manner consistent with a systemic anti-inflammatory effect.

Publication Title

Periodontal therapy alters gene expression of peripheral blood monocytes.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE72949
Identification of HS memory-associated genes
  • organism-icon Arabidopsis thaliana
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

To identify genes associated with the heat stress (HS) memory, transcript profiling using Affymetrix ATH1 microarrays was performed to compare Col-0 seedlings after the priming stimulus with control plants (unprimed).

Publication Title

The plastid metalloprotease FtsH6 and small heat shock protein HSP21 jointly regulate thermomemory in Arabidopsis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE29751
Genomic Analysis of wig-1 Pathways
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Analysis of wig-1 pathways via suppression of Wig-1 by antisense oligonucleotides

Publication Title

Genomic analysis of wig-1 pathways.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE9927
Chronic CD4+ T cell Activation & Depletion in HIV-1 Infection: Type I Interferon-Mediated Disruption of T Cell Dynamics
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The mechanism of CD4(+) T cell depletion during chronic human immunodeficiency virus type 1 (HIV-1) infection remains unknown. Many studies suggest a significant role for chronic CD4(+) T cell activation. We assumed that the pathogenic process of excessive CD4(+) T cell activation would be reflected in the transcriptional profiles of activated CD4(+) T cells. Here we demonstrate that the transcriptional programs of in vivo activated CD4(+) T cells from untreated HIV(+) individuals are clearly different from those activated CD4(+) T cells from HIV(-) individuals. We observed a dramatic up-regulation of cell cycle-associated and interferon-stimulated transcripts in activated CD4(+) T cells of untreated HIV(+) individuals. Furthermore, we find an enrichment of proliferative and Type I interferon-responsive transcription factor binding sites in the promoters of genes that are differentially expressed in activated CD4(+) T cells of untreated HIV(+) individuals compared to HIV(-) individuals. We confirm these findings by examination of in vivo activated CD4(+) T cells. Taken together, these results suggest that activated CD4(+) T cells from untreated HIV(+) individuals are in a hyper-proliferative state that is modulated by Type I interferons. From these results, we propose a new model for CD4(+) T cell depletion during chronic HIV-1 infection.

Publication Title

Chronic CD4+ T-cell activation and depletion in human immunodeficiency virus type 1 infection: type I interferon-mediated disruption of T-cell dynamics.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP005860
Disrupted processing of long pre-mRNAs and widespread RNA missplicing are components of neuronal vulnerability from loss of nuclear TDP-43 (RNA-seq)
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Cross-linking and immunoprecipitation coupled with high-throughput sequencing was used to identify binding sites within 6,304 genes as the brain RNA targets for TDP-43, an RNA binding protein which when mutated causes Amyotrophic Lateral Sclerosis (ALS). Use of massively parallel sequencing and splicing-sensitive junction arrays revealed that levels of 601 mRNAs are changed (including Fus/Tls, progranulin, and other transcripts encoding neurodegenerative disease-associated proteins) and 965 altered splicing events are detected (including in sortilin, the receptor for progranulin), following depletion of TDP-43 from adult brain with antisense oligonucleotides. RNAs whose levels are most depleted by reduction in TDP-43 are derived from genes with very long introns and which encode proteins involved in synaptic activity. Lastly, TDP-43 was found to auto-regulate its synthesis, in part by directly binding and enhancing splicing of an intron within the 3’ untranslated region of its own transcript, thereby triggering nonsense mediated RNA degradation. Overall design: RNAseq in control and Tdp-43 knockdown mouse striatum

Publication Title

Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP005859
Disrupted processing of long pre-mRNAs and widespread RNA missplicing are components of neuronal vulnerability from loss of nuclear TDP-43 (CLIP)
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Cross-linking and immunoprecipitation coupled with high-throughput sequencing was used to identify binding sites within 6,304 genes as the brain RNA targets for TDP-43, an RNA binding protein which when mutated causes Amyotrophic Lateral Sclerosis (ALS). Use of massively parallel sequencing and splicing-sensitive junction arrays revealed that levels of 601 mRNAs are changed (including Fus/Tls, progranulin, and other transcripts encoding neurodegenerative disease-associated proteins) and 965 altered splicing events are detected (including in sortilin, the receptor for progranulin), following depletion of TDP-43 from adult brain with antisense oligonucleotides. RNAs whose levels are most depleted by reduction in TDP-43 are derived from genes with very long introns and which encode proteins involved in synaptic activity. Lastly, TDP-43 was found to auto-regulate its synthesis, in part by directly binding and enhancing splicing of an intron within the 3’ untranslated region of its own transcript, thereby triggering nonsense mediated RNA degradation. Overall design: CLIP of Tdp-43 in 8 week mouse brain.

Publication Title

Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP069880
Posttranscriptional control of the neutrophil transcriptome by tristetraprolin promotes neutrophil apoptosis and compromises host antimicrobial defense
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Posttranscriptional regulation of mRNA levels in neutrophils and its consequences for immune responses are unexplored. By employing profiling of the neutrophil transcriptome we show that the mRNA-destabilizing protein tristetraprolin (TTP) limits the expression of hundreds of genes, including genes negatively regulating apoptosis. Elicited TTP-deficient neutrophils exhibited reduced apoptosis and were increased in numbers. The anti-apoptotic protein Mcl-1 was elevated in TTP-deficient neutrophils and Mcl1 mRNA was bound and destabilized by TTP. Ablation of TTP in macrophages and neutrophils resulted in an improved defense and survival of mice during invasive infection with Streptococcus pyogenes. Mice lacking myeloid TTP prevented dissemination of bacteria and efficiently blunted systemic disease by massive but controlled neutrophil deployment. These data identify posttranscriptional control by TTP to restrict neutrophils and antimicrobial defense. Overall design: WT and TTPKO peritoneal neutrophils stimulated with LPS for 4 h. Each condition analyzed in three replicates

Publication Title

The RNA-binding protein tristetraprolin schedules apoptosis of pathogen-engaged neutrophils during bacterial infection.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP070703
Pervasive TTP binding but selective target mRNA destabilization in the macrophage transcriptome [RNA-Seq_2]
  • organism-icon Mus musculus
  • sample-icon 42 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Precise control of mRNA decay is fundamental for robust yet not exaggerated inflammatory responses to pathogens. Parameters determining the specificity and extent of mRNA degradation within the entire inflammation-associated transcriptome remain incompletely understood. Using transcriptome-wide high resolution occupancy assessment of the mRNA-destabilizing protein TTP, a major inflammation-limiting factor, we qualitatively and quantitatively characterize TTP binding positions and functionally relate them to TTP-dependent mRNA decay in immunostimulated macrophages. We identify pervasive TTP binding with incompletely penetrant linkage to mRNA destabilization. A necessary but not sufficient feature of TTP-mediated mRNA destabilization is binding to 3’ untranslated regions (UTRs). Mapping of binding positions of the mRNA-stabilizing protein HuR in activated macrophages revealed that TTP and HuR binding sites in 3’ UTRs occur mostly in different transcripts implicating only a limited co-regulation of inflammatory mRNAs by these proteins. Remarkably, we identify robust and widespread TTP binding to introns of stable transcripts. Nuclear TTP is associated with spliced-out introns and maintained in the nucleus throughout the inflammatory response. Our study establishes a functional annotation of binding positions dictating TTP-dependent mRNA decay in immunostimulated macrophages. The findings allow navigating the transcriptome-wide landscape of RNA elements controlling inflammation. Overall design: Experiment comparing RNA decay rates in WT and TTP-/- macrophages at LPS 3 h and 6 h. Transcription was blocked with actinomycin D for 0, 45 or 90 min. Decay rates was calculated using linear model.

Publication Title

Tristetraprolin binding site atlas in the macrophage transcriptome reveals a switch for inflammation resolution.

Sample Metadata Fields

Specimen part, Cell line, Subject, Time

View Samples
accession-icon SRP050048
Pervasive TTP binding but selective target mRNA destabilization in the macrophage transcriptome [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Precise control of mRNA decay is fundamental for robust yet not exaggerated inflammatory responses to pathogens. Parameters determining the specificity and extent of mRNA degradation within the entire inflammation-associated transcriptome remain incompletely understood. Using transcriptome-wide high resolution occupancy assessment of the mRNA-destabilizing protein TTP, a major inflammation-limiting factor, we qualitatively and quantitatively characterize TTP binding positions and functionally relate them to TTP-dependent mRNA decay in immunostimulated macrophages. We identify pervasive TTP binding with incompletely penetrant linkage to mRNA destabilization. A necessary but not sufficient feature of TTP-mediated mRNA destabilization is binding to 3’ untranslated regions (UTRs). Mapping of binding positions of the mRNA-stabilizing protein HuR in activated macrophages revealed that TTP and HuR binding sites in 3’ UTRs occur mostly in different transcripts implicating only a limited co-regulation of inflammatory mRNAs by these proteins. Remarkably, we identify robust and widespread TTP binding to introns of stable transcripts. Nuclear TTP is associated with spliced-out introns and maintained in the nucleus throughout the inflammatory response. Our study establishes a functional annotation of binding positions dictating TTP-dependent mRNA decay in immunostimulated macrophages. The findings allow navigating the transcriptome-wide landscape of RNA elements controlling inflammation. Overall design: RNA-Seq of RNA isolated from murine bone marrow derived macrophages (WT or TTP-deficient) stimulated for 6 h with LPS

Publication Title

Tristetraprolin binding site atlas in the macrophage transcriptome reveals a switch for inflammation resolution.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE28880
TTP-dependent mRNA decay in LPS-stimulated macrophages
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Controlled decay of cytokine and chemokine mRNAs restrains the time and amplitude of inflammatory responses. Tristetraprolin (TTP) binds to AU-rich elements in 3 untranslated regions of mRNA and targets the bound mRNA for degradation. We have addressed here the function of TTP in balancing the macrophage activation state by a comprehensive analysis of TTP-dependent mRNA decay in LPS-stimulated macrophages from WT and TTP-deficient mice.

Publication Title

Tristetraprolin-driven regulatory circuit controls quality and timing of mRNA decay in inflammation.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact