refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 105 results
Sort by

Filters

Technology

Platform

accession-icon GSE73882
Functional characterization of inflammatory bowel disease-associated gut dysbiosis in gnotobiotic mice
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

Gut dysbiosis is closely involved in the pathogenesis of inflammatory bowel disease (IBD). However, it remains unclear whether IBD-associated gut dysbiosis plays a primary role in disease manifestation or is merely secondary to intestinal inflammation. Here, we established a humanized gnotobiotic (hGB) mouse system to assess the functional role of gut dysbiosis associated with two types of IBD - Crohn's disease (CD) and ulcerative colitis (UC).

Publication Title

Functional Characterization of Inflammatory Bowel Disease-Associated Gut Dysbiosis in Gnotobiotic Mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE79067
To determine transcriptome of gnotobiotic mice fed fiber-rich and fiber-free diets
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

Despite accepted health benefits of dietary fiber, little is known about the mechanisms by which fiber deprivation impacts the gut microbiota and alters disease risk. Using a gnotobiotic model, in which mice were colonized with a synthetic human gut microbiota, we elucidated the functional interactions between dietary fiber, the gut microbiota and the colonic mucus barrier, which serves as a primary defence against pathogens. We show that during chronic or intermittent dietary fiber deficiency, the gut microbiota resorts to host-secreted mucus glycoproteins as a nutrient source, leading to erosion of the colonic mucus barrier. Dietary fiber deprivation promoted greater epithelial access and lethal colitis by the mucosal pathogen, Citrobacter rodentium, but only in the presence of a fiber-deprived microbiota that is pushed to degrade the mucus layer. Our work reveals intricate pathways linking diet, gut microbiome and intestinal barrier dysfunction, which could be exploited to improve health using dietary therapeutics.

Publication Title

A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE76283
Expression data of Normal versus Mutant MPS VII Bl6 mouse
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

We used microarray to detect pathway differences in the hippocampus in mucopolysaccharidosis type VII ( MPS VII ), a mouse model of a lysosomal storage disease

Publication Title

Integrated analysis of proteome and transcriptome changes in the mucopolysaccharidosis type VII mouse hippocampus.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE22853
Expression data from human Ea.hy926 cells in response to epoxomicin and in dependency of TCF11 presence
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Coordinated regulation of the ubiquitin-proteasome system is crucial for the cell to adjust its protein degradation capacity to changing proteolytic requirements. The transcription factor TCF11 has been identified as a regulator for 26S-proteasome formation in human cells to compensate for reduced proteolytic activity. To expand the current knowledge of other UPS-related TCF11 target genes in response to epoxomicin, we performed microarray analyses of cells exposed to epoxomicin and with or without depletion of TCF11.

Publication Title

Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP189743
scRNA sequencing of 2 leukemia patients in remission after T cell therapy
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

peripheral blood samples of two leukemia patients in remission were profiled by single cell RNA sequencing approximately 1 year after receiving WT1 specific transgenic T cell therapy, at a time when patients were in clinical remission Overall design: single cell RNA sequencing of peripheral blood mononuclear cells

Publication Title

T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse post-transplant.

Sample Metadata Fields

Specimen part, Disease, Subject

View Samples
accession-icon GSE26051
Analysis of Human Tendinopathy Gene Expression
  • organism-icon Homo sapiens
  • sample-icon 46 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Chronic tendon injuries, also known as tendinopathy, are common among professional and recreational athletes. These injuries result in a significant amount of morbidity and health care expenditure and yet little is known about the molecular mechanism leading to tendinopathy. We have used histological evaluation and molecular profiling to determine the gene expression changes in 23 human patients undergoing surgical procedures for the treatment of chronic tendinopathy. Diseased tendons have altered extracellular matrix, fiber disorientation, increased cellular content and vasculature and the absence of inflammatory cells. Global gene expression profiling identified 1783 transcripts with significant different expression patterns in the diseased tendons. Global pathway analysis further suggests altered expression of extracellular matrix proteins and the lack of an appreciable inflammatory response. We have identified pathways and genes regulated in tendinopathy samples that will help contribute to the understanding of the disease towards the development of novel therapeutics.

Publication Title

Regulation of gene expression in human tendinopathy.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon GSE25156
Host Factors with Reduced Expression in Two HCV Permissive Cell Lines as Compared to the Non-Permissive Parent Cell Line Huh7
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Drugs directly targeting Hepatitis C (HCV) are often rendered useless by the high mutation rate of the virus. Thus, we deduce that targeting of host factor that affect HCV replication may provide enhanced therapy fort HCV infection. Hepatocyte cell line Huh7 is known to be non-permissive for Hepatits C (HCV) replication. Through a method developed by the Rice laboratory (Blight, K.J., et al., J Virol, 2002), selection of a small subset of permissive hepatocytes is possible. The Rice laboratory generated the first permissive cell line, Huh7.5, using this method. We generated another permissive cell line, HRP1, using the same method.

Publication Title

The membrane-bound transcription factor CREB3L1 is activated in response to virus infection to inhibit proliferation of virus-infected cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE25157
CREB3L1 Target Genes in Response to Hepatitis C Replicon Infection
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Membrane-bound transcription factor CREB3L1 undergoes Regulated Intramembrane Proteolysis (RIP) in response to Hepatitis C infection. RIP activates CREB3L1 so that it can prevent the growth of HCV infected cells through the action of downstream genes. We over-expressed a truncated form of CREB3L1 that does not require RIP to enter the nucleus. Cells over-expressing this truncated form were isolated by Fluorescence Activated Cell Sorting (FACS).

Publication Title

The membrane-bound transcription factor CREB3L1 is activated in response to virus infection to inhibit proliferation of virus-infected cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP144485
Human 5' UTR design and variant effect prediction from a massively parallel translation assay
  • organism-icon Homo sapiens
  • sample-icon 112 Downloadable Samples
  • Technology Badge IconNextSeq 550

Description

Predicting the impact of cis-regulatory sequence on gene expression is a foundational challenge for biology. We combine polysome profiling of hundreds of thousands of randomized 5' UTRs with deep learning to build a predictive model that relates human 5' UTR sequence to translation. Together with a genetic algorithm, we use the model to engineer new 5? UTRs that accurately target specified levels of ribosome loading, providing the ability to tune sequences for optimal protein expression. We show that the same approach can be extended to chemically modified RNA, an important feature for applications in mRNA therapeutics and synthetic biology. We test 35,000 truncated human 5' UTRs and 3,577 naturally-occurring variants and show that the model accurately predicts ribosome loading of these sequences. Finally, we provide evidence of 47 SNVs associated with human diseases that cause a significant change in ribosome loading and thus a plausible molecular basis for disease. Overall design: Polysom profiling and sequencing was performed using a library of 300,000 randomized 5' UTR 50-mers with eGFP used as the CDS. Three RNA chemistries were tested: unmodified, pseudouridine, and 1-methylpseudouridine. These were performed in duplicate (6 samples total). A designed library that includes human 5' UTRs, SNVs, and sequences engineered with a genetic algorithm was used with the eGFP CDS (no duplicate). A second randomized library used mCherry as the CDS, also performed in duplicate.

Publication Title

Human 5' UTR design and variant effect prediction from a massively parallel translation assay.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP075699
Identification of a distinct IL-10 producing subset of innate lymphoid type-2 effector cells with regulatory potential
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconNextSeq 500, Ion Torrent Proton

Description

ILC210 represent a distinct effector population of ILC2 cells that have regulatory potential Overall design: comparison between ILC2 cells with IL-33 stimulation or not on transcriptome change

Publication Title

Alternative activation generates IL-10 producing type 2 innate lymphoid cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact