refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 132 results
Sort by

Filters

Technology

Platform

accession-icon GSE48790
Expression data from GTF2i mutated ES cells
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Data present the expression analysis of different mouse ES cell line with altered expression of GTF2I.

Publication Title

TFII-I regulates target genes in the PI-3K and TGF-β signaling pathways through a novel DNA binding motif.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE21765
Expression data from Arabidopsis gapcp mutant treated with ABA
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Glycolytic Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) catalyzes the conversion of glyceraldehyde 3-phospate to 1,3-bisphosphoglycerate by coupling with the reduction of NAD+ to NADH. We generated mutants of the Arabidopsis plastidial GAPDH isoforms (At1g79530, At1g16300; GAPCp1, GAPCp2). gapcp double mutants (gapcp1 gapcp2) display a drastic phenotype of arrested root development and sterility.Complex interactions occurring between ABA and sugar signal transduction pathways have been shown, but the molecular mechanisms connecting both pathways are not well understood. Since we found drastic carbohydrate changes in gapcp1 gapcp2, we studied their response to ABA. by performing a microarray analysis comparing gapcp1 gapcp2 and wild type seedlings after a long term treatment with ABA.

Publication Title

Arabidopsis plants deficient in plastidial glyceraldehyde-3-phosphate dehydrogenase show alterations in abscisic acid (ABA) signal transduction: interaction between ABA and primary metabolism.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE41521
Genome wide analysis of C57BL-6 mice infected with European strain (P1/7) of Streptococcus suis
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Streptococcus suis is a major swine pathogen that can be transmitted to humans causing severe symptoms. A large human outbreak was described in China, where approximately 25% out of 215 infected humans developed an unusual streptococcal toxic shock-like syndrome (STSLS). Albeit increased expression of inflammatory mediators following infection by the Chinese S. suis strain was suggested as responsible for STSLS case severity, the mechanisms involved are still poorly understood. In this study, we investigated the host innate immune response to infection by either one of 3 strains of S. suis: 89-1591 (Canadian, intermediate virulence), P1/7 (European, high virulence), and SC84 (Chinese, epidemic strain). Using Illumina microarray and validating those results with qPCR and Luminex assay, infected mice showed elevated expression of mainly pro-inflammatory chemokine and cytokine genes. Generally, pro-inflammatory genes were expressed at a higher level in mice infected with S. suis strain SC84 > P1/7 > 89-1591. Interestingly, IFN was expressed at much higher levels only in mice infected with the S. suis strain SC84, which could potentially explain some of the STSLS symptoms. IFN-KO mice infected with SC84 showed better survival than WT mice while no differences was seen in mice infected with highly virulent P1/7 strain. Overall, our results show an important role of IFN in S. suis infections and might explain in part the increased virulence of SC84 responsible for a recent outbreak in China.

Publication Title

Exacerbated type II interferon response drives hypervirulence and toxic shock by an emergent epidemic strain of Streptococcus suis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE41520
Genome wide analysis of C57BL-6 mice infected with North-American strain (89-1591) of Streptococcus suis
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Streptococcus suis is a major swine pathogen that can be transmitted to humans causing severe symptoms. A large human outbreak was described in China, where approximately 25% out of 215 infected humans developed an unusual streptococcal toxic shock-like syndrome (STSLS). Albeit increased expression of inflammatory mediators following infection by the Chinese S. suis strain was suggested as responsible for STSLS case severity, the mechanisms involved are still poorly understood. In this study, we investigated the host innate immune response to infection by either one of 3 strains of S. suis: 89-1591 (Canadian, intermediate virulence), P1/7 (European, high virulence), and SC84 (Chinese, epidemic strain). Using Illumina microarray and validating those results with qPCR and Luminex assay, infected mice showed elevated expression of mainly pro-inflammatory chemokine and cytokine genes. Generally, pro-inflammatory genes were expressed at a higher level in mice infected with S. suis strain SC84 > P1/7 > 89-1591. Interestingly, IFN was expressed at much higher levels only in mice infected with the S. suis strain SC84, which could potentially explain some of the STSLS symptoms. IFN-KO mice infected with SC84 showed better survival than WT mice while no differences was seen in mice infected with highly virulent P1/7 strain. Overall, our results show an important role of IFN in S. suis infections and might explain in part the increased virulence of SC84 responsible for a recent outbreak in China.

Publication Title

Exacerbated type II interferon response drives hypervirulence and toxic shock by an emergent epidemic strain of Streptococcus suis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE41522
Genome wide analysis of C57BL-6 mice infected with Chinese strain (SC84) of Streptococcus suis
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Streptococcus suis is a major swine pathogen that can be transmitted to humans causing severe symptoms. A large human outbreak was described in China, where approximately 25% out of 215 infected humans developed an unusual streptococcal toxic shock-like syndrome (STSLS). Albeit increased expression of inflammatory mediators following infection by the Chinese S. suis strain was suggested as responsible for STSLS case severity, the mechanisms involved are still poorly understood. In this study, we investigated the host innate immune response to infection by either one of 3 strains of S. suis: 89-1591 (Canadian, intermediate virulence), P1/7 (European, high virulence), and SC84 (Chinese, epidemic strain). Using Illumina microarray and validating those results with qPCR and Luminex assay, infected mice showed elevated expression of mainly pro-inflammatory chemokine and cytokine genes. Generally, pro-inflammatory genes were expressed at a higher level in mice infected with S. suis strain SC84 > P1/7 > 89-1591. Interestingly, IFN was expressed at much higher levels only in mice infected with the S. suis strain SC84, which could potentially explain some of the STSLS symptoms. IFN-KO mice infected with SC84 showed better survival than WT mice while no differences was seen in mice infected with highly virulent P1/7 strain. Overall, our results show an important role of IFN in S. suis infections and might explain in part the increased virulence of SC84 responsible for a recent outbreak in China.

Publication Title

Exacerbated type II interferon response drives hypervirulence and toxic shock by an emergent epidemic strain of Streptococcus suis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE13046
Microarray analysis of Huh7 cells treated with IFNa2, OSM or IFNa2 combined with OSM
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

OSM increases the antiviral effect of IFN in Huh7 cells infected with hepatitis A virus (HAV) or HCV replicon and synergizes with IFN in the induction of antiviral genes

Publication Title

Oncostatin M enhances the antiviral effects of type I interferon and activates immunostimulatory functions in liver epithelial cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE142108
Identification of differentially expressed genes in actinic keratosis samples treated with ingenol mebutate gel
  • organism-icon Homo sapiens
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Clariom S Human array (clariomshuman)

Description

Actinic keratosis is a common skin disease that may progress to invasive squamous cell carcinoma. Ingenol mebutate has demonstrated efficacy in field treatment of actinic keratosis. However, molecular mechanisms on ingenol mebutate response are not yet fully understood.

Publication Title

Identification of differentially expressed genes in actinic keratosis samples treated with ingenol mebutate gel.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon GSE25457
A signature of 6 genes highlights defects on cell growth and specific metabolic pathways in murine and human hepatocellular carcinoma.
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Hepatocellular carcinoma (HCC) represents a major health problem as it afflicts an increasing number of patients worldwide. Albeit most of the risk factors for HCC are known, this is a deadly syndrome with a life expectancy at the time of diagnosis of less than 1 year. Definition of the molecular principles governing the neoplastic transformation of the liver is an urgent need to facilitate the clinical management of patients, based on innovative methods to detect the disease in its early stages and on more efficient therapies. In the present study we have combined the analysis of a murine model and human samples of HCC to identify genes differentially expressed early in the process of hepatocarcinogenesis, using a microarray based approach. Expression of 190 genes was impaired in murine HCC from which 65 were further validated by low-density array RT PCR. The expression of the best 45 genes was then investigated in human samples resulting in 18 genes which expression was significantly modified in HCC. Among them, JUN, methionine adenosyltransferase 1A and 2A, phosphoglucomutase 1, and acyl CoA dehydrogenase short branched chain indicate defective cell proliferation as well as one carbon pathway, glucose and fatty acid metabolism, both in HCC and cirrhotic liver, a well known preneoplastic condition. These alterations were further confirmed in public transcriptomic datasets from other authors. In addition, vasodilator stimulated phosphoprotein, an actin-associated protein involved in cytoskeleton remodelling, was also found to be increased in the liver and serum of cirrhotic and HCC patients. In addition to revealing the impairment of central metabolic pathways for liver homeostasis, further studies may probe the potential value of the reported genes for the early detection of HCC.

Publication Title

A signature of six genes highlights defects on cell growth and specific metabolic pathways in murine and human hepatocellular carcinoma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP051822
Type I interferon regulates the expression of long non-coding RNAs [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Interferons (IFNs) are key players in the antiviral response. IFN sensing by the cell activates transcription of IFN-stimulated genes (ISGs) able to induce an antiviral state by affecting viral replication and release. IFN also induces the expression of ISGs that function as negative regulators to limit the strength and duration of IFN response. The ISGs identified so far belong to coding genes. However, only a small proportion of the transcriptome corresponds to coding transcripts and it has been estimated that there could be as many coding as long non-coding RNAs (lncRNAs). To address whether IFN can also regulate the expression of lncRNAs, we analyzed the transcriptome of HuH7 cells treated or not with IFNa2 by expression arrays. Analysis of the arrays showed increased levels of several well-characterized coding genes that respond to IFN both at early or late times. Furthermore, we identified several IFN-stimulated or -downregulated lncRNAs (ISRs and IDRs). Further validation showed that ISR2, 8, and 12 expression mimics that of their neighboring genes GBP1, IRF1, and IL6, respectively, all related to the IFN response. These genes are induced in response to different doses of IFNa2 in different cell lines at early (ISR2 or 8) or later (ISR12) time points. IFNß also induced the expression of these lncRNAs. ISR2 and 8 were also induced by an influenza virus unable to block the IFN response but not by other wild-type lytic viruses tested. Surprisingly, both ISR2 and 8 were significantly upregulated in cultured cells and livers from patients infected with HCV. Increased levels of ISR2 were also detected in patients chronically infected with HIV. This is relevant as genome-wide guilt-by-association studies predict that ISR2, 8, and 12 may function in viral processes, in the IFN pathway and the antiviral response. Therefore, we propose that these lncRNAs could be induced by IFN to function as positive or negative regulators of the antiviral response. Overall design: HuH7 cells were treated with 10000 units/ml of IFN a2 and RNA was isolated 3 days post-treatment

Publication Title

Type I Interferon Regulates the Expression of Long Non-Coding RNAs.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE40484
Human inflammatory dendritic cells induce Th17 differentiation
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Transcriptome analysis of five population of Antigen Presenting Cells: inflammatory macrophages, Inflammatory dendritic cells, Cd14+CD16- monocytes, CD14 dim Cd16+ monocytes and BDCA1+ Dendritic cells.

Publication Title

Human inflammatory dendritic cells induce Th17 cell differentiation.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact