refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 193 results
Sort by

Filters

Technology

Platform

accession-icon GSE5394
Gene Expression after Cochlear Removal in Cochlear Nucleus at P7 and P21
  • organism-icon Mus musculus
  • sample-icon 44 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Deprivation of peripheral nerve input by cochlear removal in young mice results in dramatic neuron death in the cochlear nucleus (CN). The same manipulation in older mice does not result in significant loss. The molecular basis of this critical period of vulnerability remains largely unknown. Here we identified genes regulated at early time points after cochlear removal at ages when neurons are vulnerable (postnatal day (P)7) or invulnerable (P21) to this challenge. Afferent deprivation regulated very different sets of genes at P7 and P21. These genes showed a variety of functions at both ages, but surprisingly there was no net increase in pro-apoptotic genes at P7. A large set of upregulated immune-related genes was identified at P21.

Publication Title

Afferent deprivation elicits a transcriptional response associated with neuronal survival after a critical period in the mouse cochlear nucleus.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11726
Activity Deprivation-Induced Transcriptional Changes in the P21 Cochlear Nucleus
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

We analyzed whether cochlear removal-induced transcriptional changes in the cochlear nucleus (CN) were due to loss of electrical activity in the 8th nerve. Pharmacological activity blockade of the auditory nerve for 24 h resulted in similar expression changes for only a subset of genes. Thus, an additional factor not dependent on action potential-mediated signaling must also regulate transcriptional responses to deafferentation in the CN.

Publication Title

Afferent deprivation elicits a transcriptional response associated with neuronal survival after a critical period in the mouse cochlear nucleus.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9452
Definition of an ulcerative colitis preinflammatory state
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The samples are a part of a study aiming at diagnosing ulcerative colitis from genome-wide gene expression analysis of the colonic mucosa. Colonic mucosal samples were collected as endoscopic pinch biopsies from ulcerative colitis patients and from control subjects. Samples with and without macroscopic signs of inflammation were collected from the patients.

Publication Title

Diagnosis of ulcerative colitis before onset of inflammation by multivariate modeling of genome-wide gene expression data.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE30076
Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Adult-onset diseases can be associated with in utero events, but mechanisms for such temporally distant dysregulation of organ function remain unknown. The polycomb histone methyltransferase, Ezh2, stabilizes transcription by depositing repressive histone marks during development that persist into adulthood, but the function of Ezh2-mediated transcriptional stability in postnatal organ homeostasis is not understood. Here, we show that Ezh2 stabilizes the postnatal cardiac gene expression program and prevents cardiac pathology, primarily by repressing the homeodomain transcription factor Six1 in differentiating cardiac progenitors. Loss of Ezh2 in embryonic cardiac progenitors, but not in differentiated cardiomyocytes, resulted in postnatal cardiac pathology, including cardiomyocyte hypertrophy and fibrosis. Loss of Ezh2 caused broad derepression of skeletal muscle genes, including the homeodomain transcription factor Six1, which is expressed in cardiac progenitors but is normally silenced upon cardiac differentiation. Many of the deregulated genes are direct Six1 targets, implying a critical requirement for stable repression of Six1 in cardiac myocytes. Indeed, upon de-repression, Six1 promotes cardiac pathology, as it was sufficient to induce cardiac hypertrophy. Furthermore, genetic reduction of Six1 levels almost completely rescued the pathology of Ezh2-deficient hearts. Thus, repression of a single transcription factor in cardiac progenitors by Ezh2 is essential for stability of the adult heart gene expression program and homeostasis. Our results suggest that epigenetic dysregulation during discrete developmental windows can predispose to adult disease and dysregulated stress responses.

Publication Title

Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon E-MEXP-1957
Transcription profiling of Arabodpsis seedings exposed to UV-B irradiation
  • organism-icon Arabidopsis thaliana
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Interaction of COP1 and UVR8, which regulate UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis thaliana

Publication Title

Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis.

Sample Metadata Fields

Age, Treatment, Time

View Samples
accession-icon GSE54928
Functional genomic analysis of the periodic transcriptome in the developing Drosophila wing.
  • organism-icon Drosophila melanogaster
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Functional genomic analysis of the periodic transcriptome in the developing Drosophila wing.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE54926
Functional genomic analysis of the periodic transcriptome in the developing Drosophila wing [Affymetrix]
  • organism-icon Drosophila melanogaster
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

The eukaryotic cell cycle, driven by both transcriptional and post-translational mechanisms, is the central molecular oscillator underlying tissue growth throughout animals. While genome-wide studies have investigated cell cycle-associated transcription in unicellular systems, global patterns of periodic transcription in multicellular tissues remain largely unexplored. Here we define the cell cycle-associated transcriptome of the developing Drosophila wing epithelium and compare it with that of cultured Drosophila S2 cells, revealing a core set of periodic genes as well as a surprising degree of context-specificity in periodic transcription. We further employ RNAi-mediated phenotypic profiling to define functional requirements for over 300 periodic genes, with a focus on those required for cell proliferation in vivo. Finally, we investigate the role of novel genes required for interkinetic nuclear migration. Combined, these findings provide a global perspective on cell cycle control in vivo, and highlight a critical need to understand the context-specific regulation of cell proliferation.

Publication Title

Functional genomic analysis of the periodic transcriptome in the developing Drosophila wing.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP083014
RNA-Seq analysis of 4N and 2N RPE1 cells following polyploid induction via cytokinesis failure by siRNA knockdown of Anillin [tpo8]
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Tetraploidization, or genome doubling, is a prominent event in tumorigenesis, primarily because cell division in polyploid cells is error-prone and produces aneuploid cells. This study investigates changes in gene expression evoked in acute and adapted tetraploid cells and their impact on cell-cycle progression. Acute polyploidy was generated by knockdown of essential regulator of cytokinesis Anillin, which resulted in cytokinesis failure and formation of binucleate cells, or by chemical inhibition of Aurora kinases, causing abnormal mitotic exit with formation of single cells with aberrant nuclear morphology. Transcriptome analysis of these acute tetraploid cells revealed common signatures of activation of the tumor-suppressor protein p53. Suppression of proliferation in these cells was dependent on p53 and its transcriptional target - Cdk inhibitor p21. Rare proliferating tetraploid cells can emerge from acute polyploid populations. Gene expression analysis of single-cell derived, adapted tetraploid clones showed upregulation of several p53 target genes and cyclin D2, the activator of Cdk4/6/2. Overexpression of cyclin D2 in diploid cells strongly potentiated the ability to proliferate with increased DNA content despite the presence of functional p53. These results point out that p53-mediated suppression of proliferation of polyploid cells can be averted by increased levels of oncogenes such as Cyclin D2, elucidating a possible route for tetraploidy-mediated genomic instability in carcinogenesis. Overall design: Three biological replicates of cells treated with siRNA against Anillin or a non-targeting control are FACS sorted into 2N or 4N populations and assessed for gene expression differences via RNA Seq for a total of 12 samples.

Publication Title

Transcriptome analysis of tetraploid cells identifies cyclin D2 as a facilitator of adaptation to genome doubling in the presence of p53.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP037725
Transcriptional profiling of Drosophila wing pouch following CR32027 RNAi
  • organism-icon Drosophila melanogaster
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The eukaryotic cell cycle, driven by both transcriptional and post-translational mechanisms, is the central molecular oscillator underlying tissue growth throughout animals. While genome-wide studies have investigated cell cycle-associated transcription in unicellular systems, global patterns of periodic transcription in multicellular tissues remain largely unexplored. Here we define the cell cycle-associated transcriptome of the developing Drosophila wing epithelium and compare it with that of cultured Drosophila S2 cells, revealing a core set of periodic genes as well as a surprising degree of context-specificity in periodic transcription. We further employ RNAi-mediated phenotypic profiling to define functional requirements for over 300 periodic genes, with a focus on those required for cell proliferation in vivo. Finally, we investigate the role of novel genes required for interkinetic nuclear migration. Combined, these findings provide a global perspective on cell cycle control in vivo, and highlight a critical need to understand the context-specific regulation of cell proliferation. Two RNAi lines of CR32027, a non-coding RNA gene identified in this study, are examined for transcriptional changes relative to wt. Overall design: Transcriptional profiles of two RNAi knockdowns, CR32027-IR1 and CR32027-IR2, are examined in Drosophila wing pouch relative to OreR wt in triplicate by RNA Seq.

Publication Title

Functional genomic analysis of the periodic transcriptome in the developing Drosophila wing.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE43409
RORt+ Innate lymphoid cells transcriptomes after aNKp44 and cytokine stimulation
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

RORt+ innate lymphoid cells (ILC) are crucial players of innate immune responses and represent a major source of IL-22, which has an important role in mucosal homeostasis. The signals required by RORt+ ILC to express IL-22 and other cytokines, including TNF, have only partially been elucidated. Here we show that RORt+ ILC can directly sense the environment by the engagement of the activating receptor NKp44. NKp44 triggering in RORt+ ILC selectively activates a coordinated pro-inflammatory program, including TNF, while cytokine stimulation induces preferentially IL-22 expression. However, combined engagement of NKp44 and cytokine receptors results in a strong synergistic effect. These data support the concept that NKp44+ RORt+ ILC can be activated without cytokines and are able to switch between IL-22 or TNF production, depending on the triggering stimulus.

Publication Title

RORγt⁺ innate lymphoid cells acquire a proinflammatory program upon engagement of the activating receptor NKp44.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact