refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 15 results
Sort by

Filters

Technology

Platform

accession-icon SRP052056
RNA-Sequencing of human papillary thyroid carcinomas
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

RNA-Sequencing analysis of 18 papillary thyroid carcinoma biopsies and of 4 healthy donors'' thyroids. In this analysis we assessed differential gene expression and investigated the mutational landscape in this tumor type. Analysis of gene fusion was also performed, leading to the identification of a novel chimeric transcript, potential driver in tumor initiation. Overall design: Total RNA isolated from 18 papillary thyroid carcinoma biopsies and 4 healthy donors'' thyroids.

Publication Title

New somatic mutations and WNK1-B4GALNT3 gene fusion in papillary thyroid carcinoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP066173
Inefficient DNA repair is an aging-related modifier of Parkinson disease
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The underlying relation between Parkinson disease (PD) etiopathology and its major risk factor, aging, is largely unknown. The nature of the specific age-related mechanisms promoting PD onset is experimentally difficult to elucidate because aging is a highly complex process contributed by multiple factors. Recent evidence, however, established a strong and causative link between genome stability and aging. To investigate a possible nexus between DNA damage accumulation, aging, and PD we examined DNA repair pathways associated with aging in laboratory animal models and human cases. We demonstrate that dermal fibroblasts from PD patients display flawed nucleotide excision repair (NER) capacity and that NER-defective mice exhibit typical PD-like pathological alterations, including decreased dopaminergic innervation in the striatum, increased phospho-synuclein levels, and defects in mitochondrial respiration. NER mouse mutants are also more sensitive to the prototypical PD toxin MPTP and their transcriptomic landscape shares important similarities with that of PD patients. Overall, our results demonstrate that specific defects in DNA repair impact the dopaminergic system, are associated with human PD pathology, and might therefore constitute a novel risk factor for PD by affecting the aging process. Overall design: In total 8 samples were analyzed, 4 controls and 4 Ercc1 mutants.

Publication Title

Inefficient DNA Repair Is an Aging-Related Modifier of Parkinson's Disease.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE26334
Expression data from LoVo colon cancer lines +/- constitutive LIN28B expression
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We sought to elucidate the molecular mechanisms whereby LIN28B functions by comparing the gene expression profile of cells constitutively expressing LIN28B to empty vector controls.

Publication Title

LIN28B promotes colon cancer progression and metastasis.

Sample Metadata Fields

Disease, Cell line

View Samples
accession-icon GSE31281
Gene expression data from livers of Yap+/+ and Yap+/- mice at postnatal day 30
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Liver undergoes both size increase and differentiation during postnatal period, which in mice is approximately first 30 days. The mechanisms of simultaneous postnatal liver cell proliferation and maturation are not clear. In these experiments, role of yes associated protein (Yap), the downstream effector of Hippo Kinase signaling pathway was investigated.

Publication Title

Yes-associated protein is involved in proliferation and differentiation during postnatal liver development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE46269
miRNAs involved in regulating embolic stroke recovery following spontaneous reperfusion
  • organism-icon Rattus norvegicus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina ratRef-12 v1.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

microRNAs Involved in Regulating Spontaneous Recovery in Embolic Stroke Model.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE46267
microRNAs involved in regulating embolic stroke recovery following spontaneous reperfusion [mRNA]
  • organism-icon Rattus norvegicus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina ratRef-12 v1.0 expression beadchip

Description

To date, miRNA and mRNA expression studies on cerebral ischemia in both human and animal models have focused mainly on acute phase of ischemic stroke. In this study, we present the roles played by microRNAs in the spontaneous recovery phases in cerebral ischemia using rodent stroke models.

Publication Title

microRNAs Involved in Regulating Spontaneous Recovery in Embolic Stroke Model.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP090938
Transcriptional responses in 6.5 dpf larval zebrafish guts upon feeding a high-fat or low-fat meal
  • organism-icon Danio rerio
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

We report the transcriptional response of the zebrafish digestive organs to an acute high-fat feed using RNASeq analysis and highlight the changes in gene expression involved in the synthesis, storage, and dispersal of lipids. These key physiological responses to a high-fat meal all stem from the endoplasmic reticulum (ER), where lipids are formed and assigned to their fates. Overall design: A feeding time course was undertaken with 6.5-dpf larval zebrafish. Triplicate samples were independently prepared from pairwise crosses fed either high-fat or low-fat food. 5% egg yolk emulsion (high-fat) feeds and 10% egg white (low-fat) feeds were prepared. At the appropriate time points, digestive organs (intestine, liver, pancreas) were dissected from 10 anesthetized larval zebrafish. Unfed controls were used to determine a transcriptional baseline.

Publication Title

Endoplasmic Reticulum Lipid Flux Influences Enterocyte Nuclear Morphology and Lipid-dependent Transcriptional Responses.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6629
Domain-Wide Regulation of Gene Expression in the Human Genome
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Transcription factor complexes bind to regulatory sequences of genes, providing a system of individual expression regulation. Targets of distinct transcription factors usually map throughout the genome, without clustering. Nevertheless, highly and weakly expressed genes do cluster in separate chromosomal domains with an average size of 80 to 90 genes. We therefore asked whether, besides transcription factors, an additional level of gene expression regulation exists that acts on chromosomal domains. Here we show that identical green fluorescent protein (GFP) reporter constructs integrated at 90 different chromosomal positions determined by sequencing, obtain expression levels that correspond to the activity of the domains of integration. These domains are about 80 genes long and can exert an effect of up to 8-fold on the expression of integrated genes. 3D-FISH shows that active domains of integration have a more open chromatin structure than integration domains with weak activity. These results reveal a novel domain-wide regulatory mechanism that, together with transcription factors, exerts a dual control over gene transcription.

Publication Title

Domain-wide regulation of gene expression in the human genome.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP064121
Histone Demethylase-Assisted Somatic Cell Nuclear Transfer Facilitates Derivation of Human Pluripotent Stem Cells
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

The extremely low efficiency of human embryonic stem cell (hESC) derivation using somatic cell nuclear transfer (SCNT) limits potential application. Blastocyst formation from human SCNT embryos occurs at a low rate and with only some oocyte donors. We previously showed in mice that reduction of histone H3 lysine 9 trimethylation (H3K9me3) through ectopic expression of the H3K9me3 demethylase Kdm4d greatly improves SCNT embryo development. Here we show that overexpression of a related H3K9me3 demethylase KDM4A improves human SCNT, and that, as in mice, H3K9me3 in the human somatic cell genome is an SCNT reprogramming barrier. Overexpression of KDM4A significantly improves the blastocyst formation rate in human SCNT embryos by facilitating transcriptional reprogramming, allowing derivation of NTESCs from all oocyte donors tested using adult AMD patient somatic nuclei donors. This conserved mechanistic insight has potential applications for improving SCNT in a variety of contexts, including regenerative medicine. Overall design: Here we perform RNA-seq based transcriptome profiling in human Donor (fibroblast cells), in vitro fertilized embryos at 8-cell stages (IVF_8Cell), somatic cell nuclear transfer embryos at 8-cell stages (SCNT_8Cell), SCNT assisted by KDM4A 8-cell embryos (SCNT_KDM4A_8Cell). Besides, we also perform RNA-seq in Control human ES cells (CTR_hES) and SCNT assisted by KDM4A derived human ES cells (NTK) with duplicates. 

Publication Title

Histone Demethylase Expression Enhances Human Somatic Cell Nuclear Transfer Efficiency and Promotes Derivation of Pluripotent Stem Cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE41890
Expression data from multiple sclerosis patients in remission and relapse
  • organism-icon Homo sapiens
  • sample-icon 67 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Whole-genome expression of peripheral blood leukocytes was measured in 22 patients and 24 controls using the Human Gene 1.0 ST array by Affymetrix

Publication Title

Transcriptomic profile reveals gender-specific molecular mechanisms driving multiple sclerosis progression.

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact