refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 259 results
Sort by

Filters

Technology

Platform

accession-icon GSE38342
E12.5 CD9+ Mouse Placental Trophoblast Microarray, Wild-type vs c-Met KO
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The placenta serves as the structural interface for nutrient and waste exchange for proper fetal development. Although defects in placental function result in various placental disorders, molecular mechanisms orchestrating placental development and function are poorly understood. Gene targeting studies have shown that Hgf or c-Met KO embryos exhibit growth retardation and markedly smaller size of the placenta, and die by E14.5. Stem/progenitor cells in various tissues express c-Met and they participate in morphogenesis and tissue repair. Thus, we hypothesized that the HGF/c-Met signaling pathway is essential for the emergence, proliferation, and/or differentiation of putative stem/precursor cells of labyrinth trophoblasts at the midgestation stage.

Publication Title

c-Met-dependent multipotent labyrinth trophoblast progenitors establish placental exchange interface.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE80633
Gene expression analysis in cortex of CRTC1 deficient mice and WT littermates
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To identify gene expression changes associated with Crtc1 deficiency, we performed genome-wide transcriptome profile analyses by using mouse cDNA microarrays in the cortex of Crtc1/ and WT female mice

Publication Title

Involvement of the agmatinergic system in the depressive-like phenotype of the Crtc1 knockout mouse model of depression.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE49383
Gene expression data from mouse HDAC4 KO pups, postnatal day 3
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Reversible protein acetylation provides a central mechanism for controlling gene expression and cellular signaling events. It is governed by the antagonistic commitment of two enzymes families: the histone acetyltransferases (HATs) and the histone deacetylases (HDACs). HDAC4, like its class IIa counterparts, is a potent transcriptional repressor through interactions with tissue-specific transcription factors via its N-terminal domain. Whilst the lysine deacetylase activity of the class IIa HDACs is much less potent than that of the class I enzymes, HDAC4 has been reported to influence protein deacetylation through its interaction with HDAC3.

Publication Title

HDAC4 does not act as a protein deacetylase in the postnatal murine brain in vivo.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE55315
Progesterone Antagonist Therapy in a Pelizaeus-Merzbacher Mouse Mode
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Pelizaeus-Merzbacher disease (PMD) is a severe hypomyelinating disease, characterized by ataxia, intellectual disability, epilepsy and premature death. In the majority of cases, PMD is caused by duplication of PLP1 that is expressed in myelinating oligodendrocytes. Despite detailed knowledge of PLP1, there is presently no curative therapy for PMD. We used a Plp1 transgenic PMD mouse model to test the therapeutic effect of Lonaprisan, an antagonist of the nuclear progesterone receptor, in lowering Plp1 mRNA overexpression. We applied placebo-controlled Lonaprisan therapy to PMD mice for 10 weeks and performed the grid slip analysis to assess the clinical phenotype. Additionally, mRNA expression and protein accumulation as well as histological analysis of the central nervous system were performed. While Plp1 mRNA levels are increased about 1.8-fold in PMD mice compared to wildtype controls, daily Lonaprisan treatment reduced overexpression at the RNA level up to 1.5-fold, which was sufficient to significantly improve a poor motor phenotype. Electron microscopy confirmed a 25% increase in the number of myelinated axons in the corticospinal tract when compared to untreated PMD mice. Microarray analysis revealed the upregulation of pro-apoptotic genes in PMD mice that could be partially rescued by Lonaprisan treatment, which also reduced microgliosis, astrogliosis, and lymphocyte infiltration.

Publication Title

Progesterone antagonist therapy in a Pelizaeus-Merzbacher mouse model.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE29681
Expression data from WT and R6/2 mice treated with HSP90 inhibitor NVP-HSP990
  • organism-icon Mus musculus
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Huntingtons disease (HD) is a neurodegenerative disorder that is associated with the deposition of proteinaceous aggregates in the brains of HD patients and mouse models. Previous studies have suggested that wide-scale disruption of protein homeostasis occurs in protein folding diseases. Protein homeostasis can be maintained by activation of the heat shock response (HSR) via the transcription factor heat shock factor 1 (HSF1), the pharmacological activation of which can be achieved by Hsp90 inhibition and has been demonstrated to be beneficial in cell and invertebrate models of HD. Whether the HSR is functional in HD and whether its activation has therapeutic potential in mammalian HD models is currently unknown. To address these issues, we used a novel, brain penetrant Hsp90 inhibitor to activate the HSR in brain after systemic administration. Microarrays, quantitative PCR and western blotting showed that the HSR becomes impaired with disease progression in two mouse models of HD and that this originates at the level of transcription.

Publication Title

Altered chromatin architecture underlies progressive impairment of the heat shock response in mouse models of Huntington disease.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE76027
Expression data of sciatic nerves from mice with Schwann-cell specific Sip1 deletion compared to control mice.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Schwann cell maturation is tightly controlled by a set of transcriptional regulators. We have deleted the zinc-finger transcription factor Sip1 specifically from immature Schwann cells and observed a dramatic developmental delay.

Publication Title

Zeb2 is essential for Schwann cell differentiation, myelination and nerve repair.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE53403
Expression data from mouse adipose tissue macrophage
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

In mammals, expansion of adipose tissue mass induces accumulation of adipose tissue macrophages (ATMs). We isolated CD11c- (FB) and CD11c+ (FBC) perigonadal ATMs from SVCs of lean (C57BL/6J Lep +/+) and obese leptin-deficient (C57BL/6J Lep ob/ob) mice.

Publication Title

Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE79631
Global genome expression analysis of lamina propria derived WT and Nlrp6-/- Ly6C-hi inflammatory monocytes
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

Nlrp6-/- lamina propria Ly6C-hi monocytes in response to AOM/DSS have deficient TNF production, but increased production of other pro-inflammatory cytokines as compared to WT

Publication Title

NLRP6 function in inflammatory monocytes reduces susceptibility to chemically induced intestinal injury.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE38614
Hierarchical regulation in a KRAS pathway-dependent transcriptional network revealed by a reverse-engineering approach
  • organism-icon Rattus norvegicus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Reverse engineering a hierarchical regulatory network downstream of oncogenic KRAS.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE38584
Hierarchical regulation in a KRAS pathway-dependent transcriptional network revealed by a reverse-engineering approach (7TF and control)
  • organism-icon Rattus norvegicus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

RAS mutations are highly relevant for progression and therapy response of human tumours, but the genetic network that ultimately executes the oncogenic effects is poorly understood. Here we used a reverse-engineering approach in an ovarian cancer model to reconstruct KRAS oncogene-dependent cytoplasmic and transcriptional networks from perturbation experiments based on gene silencing and pathway inhibitor treatments. We measured mRNA and protein levels in manipulated cells by microarray, RT-PCR and Western Blot analysis, respectively. The reconstructed model revealed complex interactions among the transcriptional and cytoplasmic components, some of which were confirmed by double pertubation experiments. Interestingly, the transcription factors decomposed into two hierarchically arranged groups. To validate the model predictions we analysed growth parameters and transcriptional deregulation in the KRAS-transformed epithelial cells. As predicted by the model, we found two functional groups among the selected transcription factors. The experiments thus confirmed the predicted hierarchical transcription factor regulation and showed that the hierarchy manifests itself in downstream gene expression patterns and phenotype.

Publication Title

Reverse engineering a hierarchical regulatory network downstream of oncogenic KRAS.

Sample Metadata Fields

Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact