refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 259 results
Sort by

Filters

Technology

Platform

accession-icon SRP136739
Single cell RNA-seq of CRX+ cells obtained at day 90 of retinal organoid differentiation
  • organism-icon Homo sapiens
  • sample-icon 96 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Death of photoreceptors and/or Retinal Pigment Epithelium (RPE) cells is a common cause of age related and inherited retinal dystrophies, thus their replenishment from renewable stem cell sources is a well sought therapeutic goal. Human pluripotent stem cells provide a useful cell source in view of their limitless self-renewal capacity and potential to differentiate into all key retinal cell types either in isolation or as part of three dimensional retinal organoids. Photoreceptor precursors have been isolated from differentiating human pluripotent stem cells either through application of cell surface markers or fluorescent reporter approaches and shown to share a transcriptional profile akin to foetal photoreceptors. In this study we investigated the transcriptional profile of CRX+ photoreceptor precursors derived from human embryonic stem cells (hESC) using single cell RNA sequencing and their engraftment capacity in an animal model of retinitis pigmentosa (C3H/rd1). Single cell RNA seq analysis revealed the presence of dominant cell cluster which displayed the hallmarks of early cone photoreceptor expression. When transplanted subretinally into the C3H/rd1 mice, the Crx positive cells settled next to the inner nuclear layer of host retina, matured into cone photoreceptors and made connections with the inner neurones of the host retina. Cellular transfer between the host retina and donor photoreceptors was investigated and shown to be minimal. Together our data provide valuable molecular insights into the transcriptional profile of human pluripotent stem cells derived CRX+ photoreceptor precursors and indicate their usefulness as a source of transplantable cone photoreceptors. Overall design: CRX-GFP human ESC line was differentiated to retinal organoids. At day 90 CRX+ and CRX- cells were purified by flow activated cell sorting and subjected to single cell RNA-seq. RNA-seq of bulk CRX+ and CRX- from the same experiment was carried out in parallel.

Publication Title

CRX Expression in Pluripotent Stem Cell-Derived Photoreceptors Marks a Transplantable Subpopulation of Early Cones.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE29570
The mtDNA Amerindian Haplogroup B2 enhances the risk for Cervical Cancer of HPV: de-regulation of mitochondrial genes may be involved.
  • organism-icon Homo sapiens
  • sample-icon 61 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Although Human papillomavirus infection is the main causal factor for cervical cancer (CC), there is data suggesting genetic factors could modulate the risk and progression of CC. Sibling studies suggest that maternally inherited factors could be involved in CC. To assess whether mitochondrial DNA (mtDNA) polymorphisms are associated to cervical cancer, HPV infection and HPV types, a case-control study was performed in the Mexican mestizo population. The polymorphism of mtDNA D-Loop was investigated in 187 cervical cancer patients and 270 healthy controls. D-loop was amplified from a blood DNA sample and analyzed by sequencing. HPV was detected and typed in cervical scrapes from both groups. mtDNA polymorphisms were compared in the whole samples and stratified by HPV types. The expression of 29 mitochondrial genes was analyzed in a subset of 45 tumor biopsies using the expression microarray ST1.0. The Amerindian haplogroup B2 increased the risk for CC (OR=1.6, 95% CI: 1.05-2.58) and showed an additive effect of 36% over the risk conferred by the HPV (OR=153, 95% CI: 65.4-357.5). The frequency of HPV 16, 18, 31 and 45 in cancer samples was similar in all haplogroups but one (D1). It showed a very low frequency of HPV16, any HPV18 and high frequency of HPVs 31, 45 and other types. Two mtDNA genes (MT-TD, MTTK) could be involved in the increased risk conferred by the haplogroup B2, since they were up-regulated exclusively in B2 tumors (p<0.05, t-test). These findings will contribute to clarify the importance of genetic factors in CC.

Publication Title

The Amerindian mtDNA haplogroup B2 enhances the risk of HPV for cervical cancer: de-regulation of mitochondrial genes may be involved.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE53403
Expression data from mouse adipose tissue macrophage
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

In mammals, expansion of adipose tissue mass induces accumulation of adipose tissue macrophages (ATMs). We isolated CD11c- (FB) and CD11c+ (FBC) perigonadal ATMs from SVCs of lean (C57BL/6J Lep +/+) and obese leptin-deficient (C57BL/6J Lep ob/ob) mice.

Publication Title

Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE38614
Hierarchical regulation in a KRAS pathway-dependent transcriptional network revealed by a reverse-engineering approach
  • organism-icon Rattus norvegicus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Reverse engineering a hierarchical regulatory network downstream of oncogenic KRAS.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE38584
Hierarchical regulation in a KRAS pathway-dependent transcriptional network revealed by a reverse-engineering approach (7TF and control)
  • organism-icon Rattus norvegicus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

RAS mutations are highly relevant for progression and therapy response of human tumours, but the genetic network that ultimately executes the oncogenic effects is poorly understood. Here we used a reverse-engineering approach in an ovarian cancer model to reconstruct KRAS oncogene-dependent cytoplasmic and transcriptional networks from perturbation experiments based on gene silencing and pathway inhibitor treatments. We measured mRNA and protein levels in manipulated cells by microarray, RT-PCR and Western Blot analysis, respectively. The reconstructed model revealed complex interactions among the transcriptional and cytoplasmic components, some of which were confirmed by double pertubation experiments. Interestingly, the transcription factors decomposed into two hierarchically arranged groups. To validate the model predictions we analysed growth parameters and transcriptional deregulation in the KRAS-transformed epithelial cells. As predicted by the model, we found two functional groups among the selected transcription factors. The experiments thus confirmed the predicted hierarchical transcription factor regulation and showed that the hierarchy manifests itself in downstream gene expression patterns and phenotype.

Publication Title

Reverse engineering a hierarchical regulatory network downstream of oncogenic KRAS.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE71482
Expression data from Caenorhabditis elegans fed with a Lactoferrin-based product
  • organism-icon Caenorhabditis elegans
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Lactoferrin is a highly multifunctional protein. Indeed, it is involved in many physiological functions, including regulation of iron absorption and immune responses.

Publication Title

A nutritional supplement containing lactoferrin stimulates the immune system, extends lifespan, and reduces amyloid &lt;i&gt;β&lt;/i&gt; peptide toxicity in &lt;i&gt;Caenorhabditis elegans&lt;/i&gt;.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE38585
Hierarchical regulation in a KRAS pathway-dependent transcriptional network revealed by a reverse-engineering approach (RAS-ROSE and ROSE with siRNA)
  • organism-icon Rattus norvegicus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

RAS mutations are highly relevant for progression and therapy response of human tumours, but the genetic network that ultimately executes the oncogenic effects is poorly understood. Here we used a reverse-engineering approach in an ovarian cancer model to reconstruct KRAS oncogene-dependent cytoplasmic and transcriptional networks from perturbation experiments based on gene silencing and pathway inhibitor treatments. We measured mRNA and protein levels in manipulated cells by microarray, RT-PCR and Western Blot analysis, respectively. The reconstructed model revealed complex interactions among the transcriptional and cytoplasmic components, some of which were confirmed by double pertubation experiments. Interestingly, the transcription factors decomposed into two hierarchically arranged groups. To validate the model predictions we analysed growth parameters and transcriptional deregulation in the KRAS-transformed epithelial cells. As predicted by the model, we found two functional groups among the selected transcription factors. The experiments thus confirmed the predicted hierarchical transcription factor regulation and showed that the hierarchy manifests itself in downstream gene expression patterns and phenotype.

Publication Title

Reverse engineering a hierarchical regulatory network downstream of oncogenic KRAS.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE14359
Expression data from conventional osteosarcoma compared to primary non-neoplastic osteoblast cells
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

In osteosarcoma patients, the development of metastases, often to the lungs, is the most frequent cause of death. To improve this situation, a deeper understanding of the molecular mechanisms governing osteosarcoma development and dissemination and the identification of novel drug targets for an improved treatment are needed. Towards this aim, we characterized osteosarcoma tissue samples compared to primary osteoblast cells using Affymetrix HG U133A microarrays.

Publication Title

De novo expression of EphA2 in osteosarcoma modulates activation of the mitogenic signalling pathway.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP097691
Oncogenic PIK3CA(H1047R) and CTNNB1(stab) in intestinal organoids
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Goals of the study was to compare transcripional and phenotypic response of mouse intestinal organoid cultures to the PIK3CA(H1047R) and CTNNB1(stab) oncogenes. Overall design: Two biological replicates of organoids with transgenic tdTomato-Luciferase, tdTomato-PIK3CAH1047R, tdTomato-CTNNB1stab or td-Tomato-PIK3CAH1047R-CTNNB1stab were analysed by RNA-Seq By comparing 7-10 x 10E7 50bp paired end reads per library we identify transcriptional alterations in the intestinal epithelium following expression of each or both oncogenes,

Publication Title

Oncogenic β-catenin and PIK3CA instruct network states and cancer phenotypes in intestinal organoids.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE46549
Microarray analysis of colon carcinoma cell lines
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

To investigate potential differences between strong and weak oscillators at the gene expression level we carried out a transcriptome analysis for each cell line. Our results indicate that phenotypic circadian clock differences are reflected by gene expression differences both in genes of the core network, but also in additional genes not directly associated with circadian clock functions.

Publication Title

Ras-mediated deregulation of the circadian clock in cancer.

Sample Metadata Fields

Specimen part, Cell line, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact