refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 58 results
Sort by

Filters

Technology

Platform

accession-icon GSE40839
Expression data from fibroblasts cultured from normal and fibrotic human lung tissue
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Pulmonary fibrosis develops as a consequence of environmentally induced lung injury and/or an inherent disease susceptibility causing fibroblast activation, proliferation and extracellular matrix deposition.

Publication Title

Microarray profiling reveals suppressed interferon stimulated gene program in fibroblasts from scleroderma-associated interstitial lung disease.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE30956
Expression data from pig BMDM treated with salmonella LPS
  • organism-icon Sus scrofa
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

Mouse bone marrow-derived macrophages (BMDM) grown in macrophage colony-stimulating factor (CSF-1) have been used widely in studies of macrophage biology and the response to toll-like receptor agonists. We investigated whether similar cells could be derived from the domestic pig. Cultivation of pig bone marrow cells for 5-7 days in presence of rhCSF-1 generated a pure population of BMDM that expressed the usual macrophage markers (CD14, CD16, CD163, CD172a), are potent phagocytic cells and produced tumor necrosis factor (TNF) in response to lipopolysaccharide (LPS). Bone marrow cells could be stored frozen and thawed, providing a renewable resource.

Publication Title

Pig bone marrow-derived macrophages resemble human macrophages in their response to bacterial lipopolysaccharide.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE32448
CPDR tumor-benign 80 genechip dataset
  • organism-icon Homo sapiens
  • sample-icon 76 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

From over 300 patients two groups were selected which had prostate tumors with either well differentiated (WD) or poorly differentiated (PD) after radical Prostatectomy. The PD group had Gleason score 8-9, seminal vesicle invasion, and poorly differentiated tumor cells; the WD group had Gleason score 6-7, no seminal vesicle invasion, and well to moderately differentiated tumor cells. LCM compatible specimens were selected from age and race (Caucasians) matched PD or WD patients with no family history of CaP. Matching normal epithelal cells were also selected for the analysis.

Publication Title

Elevated osteonectin/SPARC expression in primary prostate cancer predicts metastatic progression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18610
Expression profiling of mouse ing2 -/- mice with spermatogenic arrest and infertility
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Expression profiling of mouse ing2 -/- testis vs WT reveals gene expression differences consistent with spermatogenic arrest and infertility. Ing2 is indispensable for male germ cell development in mice. While mice deficient for Ing2 were born and grew without apparent abnormalities, male, but not female, were infertile, consistent with the highest expression of Ing2 in testes in wild-type mice and in humans. Histological and DNA content analyses in Ing2-/- testes revealed a spermatogenesis arrest at meiotic phase and enhanced apoptosis associated with increased p53, resulting in a decline in mature spermatozoa, which became more severe in older age. HDAC1 accumulation and core histone deacetylation at pachytene stage were impaired in Ing2-/- testes, suggesting that the recruitment of HDAC1 by Ing2 plays a critical role in spermatogenesis. This study establishes Ing2 as a novel mammalian regulator of spermatocyte differentiation, which coordinates spermatogenesis stage-specific histone modifications. This study has implications in understanding human male infertility.

Publication Title

Targeted disruption of Ing2 results in defective spermatogenesis and development of soft-tissue sarcomas.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP031980
TBR1 Directly Represses Fezf2 to Control the Laminar Origin and Development of the Corticospinal Tract
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

Our independent analyses using mRNA-Seq, quantitative RT-PCR, and in situ hybridization confirmed a significant up-regulation of Fezf2 in Tbr1-/- neocortex. However, analysis by immunostaining and immunoblotting revealed that SOX5 protein levels were relatively unaltered in late embryonic and neonatal Tbr1-/- cortex. This led us to the hypothesis that TBR1 regulates Fezf2 transcription via direct binding to regulatory sequences near Fezf2. To identify genome-wide TBR1 binding sites in an unbiased and hypothesis-independent manner, we analyzed TBR1-immu-noprecipitated chromatin using deep sequencing (ChIP-Seq). We tested several available anti-TBR1 antibodies and found that none was suitable for immunoprecipitating chromatin of sufficient quality for ChIP-Seq. Thus, we generated a V5-TBR1fusion construct and expressed it in N2A cells. V5-TBR1 was immunoprecipitated using an anti-V5 antibody. DNA-Seq was performed on the Illumina GAIIx platform.

Publication Title

TBR1 directly represses Fezf2 to control the laminar origin and development of the corticospinal tract.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP031888
Laminar and Temporal Expression Dynamics of Coding and Noncoding RNAs in the Mouse Neocortex
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon

Description

The hallmark of the cerebral neocortex is its organization into six distinct layers, each containing a characteristic set of neural cell types and synaptic connections. The transcriptional events involved in laminar development and function still remain elusive. Here we employed deep sequencing of mRNA and small RNA species to gain insights into transcriptional differences among layers and their temporal dynamics during postnatal development of the mouse primary somatosensory neocortex. A number of novel coding and noncoding transcripts were identified with specific spatiotemporal expression and splicing patterns across layers or time points. We also identified gene co-expression networks associated with distinct biological processes and transcriptional sharing between distinct biological processes, as well as, potential microRNA and mRNA interactions. Overall, this study provides an integrated view of the laminar and temporal expression dynamics of coding and noncoding transcripts in the mouse neocortex and a resource for future studies of neurodevelopment and transcriptome.

Publication Title

Laminar and temporal expression dynamics of coding and noncoding RNAs in the mouse neocortex.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP100512
Post-Transcriptional Regulation of Mouse Neurogenesis by Pumilio Proteins [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We employ mRNA-seq to investigate transcriptome of Pum1-Knockout, Pum2-Knockout and WT conditons Overall design: In order to investigate whether Pum1 and Pum2 regulate their targets at their RNA levels, we used 1/10 of the samples from the Pum1 and Pum2 iCLIP experiments (four biological repeats of WT, P1KO, and P2KO neonatal brains) to extract total RNAs for RNA deep sequencing. And we also collected three Ndcko neonatal brains for RNA deep sequencing.

Publication Title

Post-transcriptional regulation of mouse neurogenesis by Pumilio proteins.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE13344
Exon Array expression data from 13 areas of the late second trimester human brain
  • organism-icon Homo sapiens
  • sample-icon 186 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Tissue was microdissected from 13 regions, including 9 distinct neocortical areas, from both left and right sides of four late second trimester human brain specimens. Gene- and exon-level differential expression analyses were performed by mixed model, nested analysis of variance using the XRAY software from Biotique Systems. Further details available in Johnson, Kawasawa, et al., "Functional and Evolutionary Insights into Human Brain Development through Global Transcriptome Analysis" Neuron, Volume 62, Issue 4, 2009

Publication Title

Functional and evolutionary insights into human brain development through global transcriptome analysis.

Sample Metadata Fields

Age

View Samples
accession-icon GSE59630
Longitudinal Gene Expression Analysis in Human Brain identifies biological processes underlying neuropathology in Down Syndrome
  • organism-icon Homo sapiens
  • sample-icon 116 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Trisomy 21 (Ts21) or Down syndrome (DS) is the most common genetic cause of intellectual disability. To investigate the consequences of Ts21 on human brain development, we have systematically analyzed the transcriptome of dorsolateral prefrontal cortex (DFC) and cerebellar cortex (CBC) using exon array mapping in DS and matched euploid control brains spanning from prenatal development to adulthood. We identify hundreds of differentially expressed (DEX) genes in the DS brains, many of which exhibit temporal changes in expression over the lifespan. To gain insight into how these DEX genes may cause specific DS phenotypes, we identified functional modules of co-expressed genes using several different bioinformatics approaches, including WGCNA and gene ontology analysis. A module comprised of genes associated with myelination, including those dynamically expressed over the course of oligodendrocyte development, was amongst those with the great levels of differential gene expression. Using Ts65Dn mouse line, the most common rodent model of DS, w e observed significant and novel defects in oligodendrocyte maturation and myelin ultrastructure; establishing a correlative proof-of-principle implicating myelin dysgenesis in DS. Thus, examination of the spatio-temporal transcriptome predicts specific cellular and functional events in the DS brain and is an outstanding resource for determining putative mechanisms involved in the neuropathology of DS.

Publication Title

Down Syndrome Developmental Brain Transcriptome Reveals Defective Oligodendrocyte Differentiation and Myelination.

Sample Metadata Fields

Sex, Disease, Race

View Samples
accession-icon SRP055528
Spatially heterogeneous choroid plexus transcriptomes encode positional identity and contribute to regional cerebrospinal fluid production
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

A sheet of choroid plexus epithelial cells extends into each cerebral ventricle and secretes signaling factors into the cerebrospinal fluid (CSF). To evaluate whether differences in the CSF proteome across ventricles arise, in part, from regional differences in choroid plexus gene expression, we defined the transcriptome of lateral ventricle (telencephalic) vs. fourth ventricle (hindbrain) choroid plexus. We find that positional identities of mouse, macaque, and human choroid plexi derive from gene expression domains that parallel their axial tissues of origin. We then show that molecular heterogeneity between telencephalic and hindbrain choroid plexi contributes to region-specific, age-dependent protein secretion in vitro. Transcriptome analysis of FACS-purified choroid plexus epithelial cells also predicts their cell type-specific secretome. Spatial domains with distinct protein expression profiles were observed within each choroid plexus. We propose that regional differences between choroid plexi contribute to dynamic signaling gradients across the mammalian cerebroventricular system. Overall design: Two-factor design with two levels per factor and n=2 biological replicates. Lateral (telencephalic) and fourth (hindbrain) choroid plexus samples are paired in that they are isolated from the same brains.

Publication Title

Spatially heterogeneous choroid plexus transcriptomes encode positional identity and contribute to regional CSF production.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact