refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 61 results
Sort by

Filters

Technology

Platform

accession-icon SRP090798
Macrophage ontogeny underlies differences in tumor-specific education in brain malignancies
  • organism-icon Mus musculus
  • sample-icon 25 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Recent efforts have uncovered immense transcriptional and ontogenetic diversity among tissue-resident macrophages, each with their own transcriptional profile endowing the cell with its tissue-specific functions. However, it is currently unknown whether the origins of different macrophage populations may affect their roles in malignancy. Given potential artifacts associated with irradiation-based lineage tracing, it remains unclear if bone marrow-derived macrophages (BMDM) are even present in tumors of the brain, a tissue where there is no homeostatic involvement of peripherally-derived myeloid cells. Here, we employed multiple models of murine brain malignancy and genetic lineage tracing models to demonstrate that BMDM are indeed abundant in primary and metastatic brain tumors. Transcriptional profiling of tumor-associated BMDM and resident microglia showed that these cells acquire substantially different gene expression profiles. Our data suggest that transcriptional networks in each cell population are associated with tumor-mediated education, yet are also influenced by chromatin landscapes established before tumor initiation. Furthermore, we demonstrate that microglia specifically repress Itga4 (CD49D), enabling its utility as a discriminatory marker between brain-resident microglia and peripherally-derived macrophages in both primary and metastatic disease in mouse and human. Overall design: Tumor associated microglia and macrophages were isolated from mouse glioma tumors. Samples are provided as matched microglia and macrophages from 3 tumors.

Publication Title

Macrophage Ontogeny Underlies Differences in Tumor-Specific Education in Brain Malignancies.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE37475
CSF-1R inhibition alters macrophage polarization and blocks gliomagenesis
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Glioblastoma multiforme (GBM), the most common and aggressive primary brain tumor in adults, can be divided into several molecular subtypes including proneural GBM. Most clinical strategies aimed at directly targeting glioma cells in these tumors have failed. A promising alternative is to target stromal cells in the brain microenvironment, such as tumor-associated microglia and macrophages (TAMs). Macrophages are dependent upon colony stimulating factor (CSF)-1 for differentiation and survival; therefore, we used an inhibitor of its receptor, CSF-1R, to target macrophages in a mouse proneural GBM model. CSF-1R inhibition dramatically increased survival in mice and regressed established GBMs. Tumor cell apoptosis was significantly increased, and proliferation and tumor grade markedly decreased. Surprisingly, TAMs were not depleted in tumors treated with the CSF-1R inhibitor. Instead, analysis of gene expression in TAMs isolated from treated tumors revealed a decrease in alternatively activated/ M2 macrophage markers, consistent with impaired tumor-promoting functions. These gene signatures were also associated with better survival specifically in the proneural subtype of patient gliomas. Collectively, these results establish macrophages as valid therapeutic targets in proneural gliomas, and highlight the clinical potential for CSF-1R inhibitors in GBM.

Publication Title

CSF-1R inhibition alters macrophage polarization and blocks glioma progression.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE47047
Gene expression data from immortal and arsenite-transformed malignant prostate epithelial cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The aim of this study was to determine how gene expression is changed after arsenite-induced malignant transformation of prostate epithelial cells.

Publication Title

Coordinate H3K9 and DNA methylation silencing of ZNFs in toxicant-induced malignant transformation.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE142450
BONE MARROW MONOCYTES AND DERIVED DENDRITIC CELLS FROM MYELODYSPLASTIC PATIENTS HAVE FUNCTIONAL ABNORMALITIES ASSOCIATED WITH DEFECTIVE RESPONSE TO BACTERIAL INFECTION
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Clariom S Human array (clariomshuman)

Description

Myelodysplastic syndromes (MDS) are a heterogeneous group of hematopoietic stem cell diseases characterized by dysplasia of one or more hematologic lineages and a high-risk of developing acute myeloid leukemia (AML). MDS patients have recurrent bacterial infections and abnormal expression of CD56 by monocytes. We investigated MDS patients’ bone marrow CD56+/CD56- monocytes and their in vitro derived dendritic cell (DCs) populations in comparison to cells obtained from disease-free subjects. We found that monocytes from MDS patients, irrespective of CD56 expression, have reduced phagocytosis activity and low expression of genes involved in triggering immune responses, regulation of immune and inflammatory response signaling pathways, and in the response to lipopolysaccharide. Dendritic cells (DCs) derived in vitro from MDS monocytes failed to develop dendritic projections and had reduced expression of HLA-DR and CD86 suggesting that antigen processing and T cell activation capabilities are impaired. In conclusion, we identified in both CD56+ and CD56- monocytes from MDS-patients several abnormalities that may be related to the increased susceptibility to infections observed in these patients.

Publication Title

Bone Marrow Monocytes and Derived Dendritic Cells from Myelodysplastic Patients Have Functional Abnormalities Associated with Defective Response to Bacterial Infection.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon SRP115815
RNA-seq of FSHD and control immortalised myoblasts I
  • organism-icon Homo sapiens
  • sample-icon 88 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

FSHD and control immortalised myoblasts show repression of Pax7 target genes Overall design: FSHD Myoblasts 54-2, 54-12, 54-A5, 16A and 12A and matched controls 54-6, 54-A10, 16U and 12U were plated at 312,000 cells per 12 well plate in proliferation media and cultured for 48 hours or until 100% confluent. RNA-sequencing was performed on high quality (RIN > 8.0) DNA free RNA.

Publication Title

PAX7 target genes are globally repressed in facioscapulohumeral muscular dystrophy skeletal muscle.

Sample Metadata Fields

Sex, Subject

View Samples
accession-icon SRP098918
Hippocampus CA1 pyramidal cells Transcriptomic profile in WT and Fmr1 KO mice, using Wfs1-CreERT2:RiboTag:Frm1 knockout and wildtype mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Comparing WT mice to a mouse model of mental retardation, this work identifies genes which display differences in ribosome-bound mRNAs, in hippocampus CA1 pyramidal cells. These genes products are potent functional components of neuronal plasticity and hippocampus-dependent memory. Overall design: Using a triple transgenic mouse line, we immunoprecipitated the HA-Rpl22 protein to isolate and sequence ribosome-associated mRNA in CA1 pyramidal cells. Pairwise comparison of wild type and Fmr1 KO mice defined a specific gene expression profile.

Publication Title

Cell Type-Specific mRNA Dysregulation in Hippocampal CA1 Pyramidal Neurons of the Fragile X Syndrome Mouse Model.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP095702
Roles of Structural maintenance of chromosome flexible domain containing 1 (Smchd1) in early lineage formation and development in mice
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The function of Structural maintenance of chromosome flexible domain containing 1 (Smchd1) was examined during mouse preimplantation development using an siRNA knockdown approach. Transient SMCHD1 deficiency during the period between fertilization and morula/early blastocyst stage compromised embryo viability and resulted in reduced cell number, reduced embryo diameter, and reduced nuclear volumes at the morula stage. RNAseq analysis of Smchd1 knockdown morulae revealed aberrant increases in expression of mRNAs related to the trophoblast lineage, indicating SMCHD1 inhibits trophoblast lineage gene expression and promotes inner cell mass formation. siRNA knockdown also reduced expression of cell proliferation genes, including S-phase kinase-associated protein 2 (Skp2). Smchd1 expression was elevated in Caudal type homeobox transcription factor 2 (Cdx2)-/- blastocysts, indicating enriched expression, and further indicating a role in inner cell mass development. These results indicate that Smchd1 plays dual roles in the preimplantation embryo, promoting a lineage-appropriate pattern of gene expression supporting inner cell mass formation, whilst controlling lineage formation and gene expression in the trophectoderm. Overall design: Effects of SMCHD1 siRNA knockdown were tested in mouse embryos

Publication Title

Novel key roles for structural maintenance of chromosome flexible domain containing 1 (Smchd1) during preimplantation mouse development.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon GSE47112
Gene expression profile of frazzled (fra) mutant Drosophila embryos
  • organism-icon Drosophila melanogaster
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

In order to analyze the global changes in gene expression resulting from loss of Fra signaling, we performed a microarray experiment comparing Drosophila embryos containing a loss of function fra[3] mutation to age matched wildtype

Publication Title

Requirement for commissureless2 function during dipteran insect nerve cord development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE47113
Gene expression profile of Drosophila third instar larval wing imaginal discs overexpressing netrinA (netA) and frazzled (fra).
  • organism-icon Drosophila melanogaster
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

In order to analyze the global changes in gene expression resulting from induction of NetA-Fra signaling, we carried out a microarray experiment comparing Drosophila third instar wing imaginal discs in which Net+Fra had been overexpressed to age matched wild type wing imaginal discs.

Publication Title

Requirement for commissureless2 function during dipteran insect nerve cord development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE5826
Liver fenofibrate feeding mouse
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To identify novel PPARalpha target genes involved in lipid metabolism

Publication Title

Evolutionarily conserved gene family important for fat storage.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact