refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1300 results
Sort by

Filters

Technology

Platform

accession-icon GSE16108
Transcription profiling of parental lines and bulked salt sensitive and salt tolerant RILs derived from 2 rice varieties
  • organism-icon Oryza sativa indica group
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

The aim of this study was to minimize the number of candidate genes responsible for salt tolerance between a pair of rice varieties (CSR27 and MI48) with contrasting level of salt tolerance by bulked segregant analysis of their recombinant inbred lines. Microarray analysis of RNA extracted from the tolerant and susceptible parents without and with stress showed 798 and 2407 differentially expressed genes, respectively. The number of differentially expressed genes was drastically reduced to 70 and 30, by pooling the RNAs from ten extreme tolerant and ten extreme susceptible RILs due to normalization of irrelevant differentially expressed genes between the parents.

Publication Title

Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.).

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE28044
Expression data from non-malignant fallopian tube epithelium
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Microarrays were used to examine gene expression changes that may be present in the fallopian tube epithelium of morphologically normal BRCA1 mutation positive and negative subjects. Fallopian tube epithelia has been implicated as an early point of origin for serous carcninoma. By examining the early events present in the microenvironment of this tissue between BRCA1 mutation carriers and non-carriers, we hoped to elucidate mechanisms that may lead to the development of epithelial ovarian cancer.

Publication Title

Identification of abrogated pathways in fallopian tube epithelium from BRCA1 mutation carriers.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18026
Analysis of chronic lymphocytic leukemia CLL cells and normal B cells
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

We have analyzed 2 normal B cells isolated from peripheral blood and 5 CLL specimens with affy 133A microarray for expression.

Publication Title

Aberrant splicing of the E-cadherin transcript is a novel mechanism of gene silencing in chronic lymphocytic leukemia cells.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE10971
Gene expression data from non-malignant fallopian tube epithelium and high grade serous carcinoma.
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The purpose of this study was to identify molecular alterations potentially involved in predisposition to adnexal serous carcinoma (SerCa) in the non-malignant fallopian tube epithelium (FTE) of BRCA1/2-mutation carriers, given recent evidence implicating the distal FTE as a common source for SerCa.

Publication Title

Gene expression profiles of luteal phase fallopian tube epithelium from BRCA mutation carriers resemble high-grade serous carcinoma.

Sample Metadata Fields

Age

View Samples
accession-icon GSE65221
Integrative network analysis reveals different pathophysiological mechanisms of insulin resistance among Caucasians and African Americans
  • organism-icon Homo sapiens
  • sample-icon 136 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Background: African Americans (AA) have more pronounced insulin resistance and higher insulin secretion than European Americans (Caucasians or CA) when matched for age, gender, and body mass index (BMI). We hypothesize that physiological differences (including insulin sensitivity [SI]) between CAs and AAs can be explained by co-regulated gene networks in tissues involved in glucose homeostasis. Methods: We performed integrative gene network analyses of transcriptomic data in subcutaneous adipose tissue of 99 CA and 37 AA subjects metabolically characterized as non-diabetic, with a range of SI and BMI values. Results: Transcripts negatively correlated with SI in only the CA or AA subjects were enriched for inflammatory response genes and integrin-signaling genes, respectively. A sub-network (module) with TYROBP as a hub enriched for genes involved in inflammatory response (corrected p= 1.7E-26) was negatively correlated with SI (r= -0.426, p= 4.95E-04) in CA subjects. SI was positively correlated with transcript modules enriched for mitochondrial metabolism in both groups. Several SI-associated co-expressed modules were enriched for genes differentially expressed between groups. Two modules involved in immune response to viral infections and function of adherens junction, are significantly correlated with SI only in CAs. Five modules involved in drug/intracellular transport and oxidoreductase activity, among other activities, are correlated with SI only in AAs. Furthermore, we identified driver genes of these race-specific SI-associated modules. Conclusions: SI-associated transcriptional networks that were deranged predominantly in one ethnic group may explain the distinctive physiological features of glucose homeostasis among AA subjects.

Publication Title

Integrative network analysis reveals different pathophysiological mechanisms of insulin resistance among Caucasians and African Americans.

Sample Metadata Fields

Sex, Specimen part, Race

View Samples
accession-icon GSE41963
Gene expression analysis in wild-type and OsGRX8 overexpression line in response to various treatments
  • organism-icon Arabidopsis thaliana
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Glutaredoxins (GRXs) are the ubiquitous oxidoreductase enzymes, which play important role in defense against various stresses. To analyze the function of a CC-type rice GRX gene, OsGRX8, we overexpressed it into Arabidopsis constitutively. The physiological analyses revealed that overexpression of GRX gene enhanced abiotic stress tolerance in transgenic plants as compared to wild-type.

Publication Title

Modified expression of an auxin-responsive rice CC-type glutaredoxin gene affects multiple abiotic stress responses.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE79212
Gene expression analysis in wild-type and OsHOX24 rice overexpression line under control and drought stress conditions
  • organism-icon Oryza sativa
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice (US) Gene 1.0 ST Array (rusgene10st)

Description

Several homeobox genes belonging to HD-ZIP I subfamily are highly induced by drought stress at various developmental stages in rice. To analyze the role of a candidate HD-ZIP I subfamily member, OsHOX24, we constitutively overexpressed it in rice. The physiological analyses revealed that overexpression of OsHOX24 gene reduced drought stress tolerance in transgenic plants as compared to wild-type.

Publication Title

Over-Expression of <i>OsHOX24</i> Confers Enhanced Susceptibility to Abiotic Stresses in Transgenic Rice via Modulating Stress-Responsive Gene Expression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE45854
Expression profiling data of RD and C2C12 cells ectopically expressing DUX4
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Transcriptomic changes induced by DUX4 expression were compared between human and mouse cell lines of muscle lineage.

Publication Title

DUX4 differentially regulates transcriptomes of human rhabdomyosarcoma and mouse C2C12 cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE42029
Silencing of OsMADS29 in Oryza sativa var. PB1
  • organism-icon Oryza sativa
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

RNAi mediated suppression of MADS29 severely affects seed set; the surviving seeds are smaller in size with reduced grain filling, abnormal starch grains and aberrant embryo development. To identify the affected pathways due to suppression of this transcription factor in the transgenic seeds, transcriptome analysis using microarray was carried out.

Publication Title

Functional delineation of rice MADS29 reveals its role in embryo and endosperm development by affecting hormone homeostasis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE42028
Overexpression of OsMADS29 in Oryza sativa var. PB1
  • organism-icon Oryza sativa
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

Overexpression of MADS29 results in severely dwarfed phenotype, resulting from a shift in auxin-cytokinin ratio in favor of cytokinins. To see the extent of change in gene expression in the leaves of the transgenic plants, whole genome transcript analysis was carried out using microarray.

Publication Title

Functional delineation of rice MADS29 reveals its role in embryo and endosperm development by affecting hormone homeostasis.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact