refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 766 results
Sort by

Filters

Technology

Platform

accession-icon GSE105288
Integrative Epigenetic and Gene Expression Analysis of Renal Tumor Progression to Metastasis
  • organism-icon Homo sapiens
  • sample-icon 44 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Renal cell carcinoma (RCC) is among the ten most common malignancies. By far, the most common histology is clear cell (ccRCC). The Cancer Genome Atlas and other large scale sequencing studies of ccRCC have been integral to the current understanding of molecular events underlying RCC and its biology. However, these data sets have focused on primary RCC which often demonstrates indolent behavior. In contrast, metastatic disease is the major cause of mortality associated with ccRCC. However, data sets examining metastatic tumor are sparse. We therefore undertook an integrative analysis of gene expression and DNA methylome profiling of metastatic ccRCC in addition to primary RCC and normal kidney. Integrative analysis of the methylome and transcriptome identified over 30 RCC specific genes whose mRNA expression inversely correlated with promoter methylation including several known targets of hypoxia inducible factors (HIFs). Notably, genes encoding several metabolism-related proteins were identified as differentially regulated via methylation. Collectively, our data provide novel insight into biology of aggressive RCC. Furthermore, they demonstrate a clear role for epigenetics in the promotion of HIF signaling and invasive phenotypes in renal cancer.

Publication Title

Integrative Epigenetic and Gene Expression Analysis of Renal Tumor Progression to Metastasis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE105261
Transcriptome analysis of normal kidney, primary and metastasis ccRCC
  • organism-icon Homo sapiens
  • sample-icon 44 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Understanding gene expression changes during transformation from normal tissue to primary RCC and then to metastasis is important. Such analysis is pivotal for undertanding biology in renal cancer and also to unearth novel gene targets.

Publication Title

Integrative Epigenetic and Gene Expression Analysis of Renal Tumor Progression to Metastasis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE49894
A transcriptional and metabolic signature of primary aneuploidy is present in chromosomally-unstable cancer cells and informs clinical prognosis
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

In all primary cells analyzed to date, aneuploidy is associated with poor proliferation. Yet, how abnormal karyotypes affect cancer a disease characterized by both aneuploidy and heightened proliferative capacity is largely unknown. Here, I demonstrate that the transcriptional alterations caused by aneuploidy in primary cells are also present in chromosomally-unstable cancer cell lines, but are not common to all aneuploid cancers. Moreover, chromosomally-unstable cancer lines display increased glycolytic and TCA-cycle flux, as is also observed in primary aneuploid cells. The biological response to aneuploidy is associated with cellular stress and slow proliferation, and a 70-gene signature derived from primary aneuploid cells is a strong predictor of increased survival in several cancers. Inversely, a transcriptional signature derived from clonal aneuploidy in tumors correlates with high mitotic activity and poor prognosis. I speculate that there are two types of aneuploidy in cancer: clonal aneuploidy, which is selected during tumor evolution and is associated with robust growth, and sub-clonal aneuploidy, which is caused by chromosomal instability (CIN) and more closely resembles the stressed state of primary aneuploid cells. Nonetheless, CIN is not benign: a subset of genes upregulated in high-CIN cancers predict aggressive disease in human patients in a proliferation-independent manner.

Publication Title

A transcriptional and metabolic signature of primary aneuploidy is present in chromosomally unstable cancer cells and informs clinical prognosis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE95248
Ventromorphins: A new class of small molecule activators of the canonical BMP signaling pathway
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Here we describe three new small-molecule activators of BMP signaling found by high throughput screening of a library of ~600,000 small molecules. Using a cell-based luciferase assay in the BMP4-responsive human cervical carcinoma clonal cell line, C33A-2D2, we identified three compounds with similar chemotypes, each ventralized zebrafish embryos and stimulated increased expression of the Bmp target genes, bmp2b and szl. Because these compounds ventralize zebrafish embryos, we have termed them ventromorphins. As expected for a BMP pathway activator, they induce the differentiation of C2C12 myoblasts to osteoblasts. Affymetrix RNA analysis confirmed the differentiation results and showed that ventromorphin treatments elicits a genetic response similar to BMP-4 treatment. Unlike isoliquiritigenin (SJ000286273), a flavone that maximally activates the pathway after 24 hours of treatment, all three ventromorphins induced SMAD1/5/8 phosphorylation within 30 minutes of treatment and achieved peak activity at 30 minutes or 1 hour, indicating that their direct responses are consistent with activated BMP signaling.

Publication Title

Ventromorphins: A New Class of Small Molecule Activators of the Canonical BMP Signaling Pathway.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE39890
Gene knockdown and overexpression of 402C>G FOXL2 in COV434 and KGN cells
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Despite their distinct biology, granulosa cell tumours (GCTs) are treated the same as other ovarian tumours. Intriguingly, a recurring somatic mutation in the transcription factor Forkhead Box L2 (FOXL2) 402C>G has been found in nearly all GCTs examined. This investigation aims to identify the pathogenicity of mutant FOXL2 by studying its altered transcriptional targets. The expression of mutant FOXL2 was reduced in the GCT cell line KGN, and wildtype and mutant FOXL2 were overexpressed in the GCT cell line COV434. Comparisons were made between the transcriptomes of control cells and cells altered by FOXL2 knockdown and overexpression, to detect potential transcriptional targets of mutant FOXL2. Comparisons were made between the transcriptomes of control cells and cells altered by FOXL2 knockdown and overexpression, to detect potential transcriptional targets of mutant FOXL2.

Publication Title

The transcriptional targets of mutant FOXL2 in granulosa cell tumours.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE53808
White Matter transcriptome in chronic alcoholism
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

Chronic alcohol consumption can lead to alchohol-related brain damage (ARBD). Despite the well known acute effects of alcohol the mechanism responsible for chronic brain damage is largely unknown. Pathologically the major change is the loss of white matter while neuronal loss is mild and restricted to a few areas such as the prefrontal cortex. In order to improve our understanding of ARBD pathogenesis we used microarrays to explore the white matter transcriptome of alcoholics and controls.

Publication Title

Comorbidities, confounders, and the white matter transcriptome in chronic alcoholism.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE51427
Eye-Specific Gene Expression following Embryonic Ethanol Exposure in Zebrafish: Roles for Heat Shock Factor 1
  • organism-icon Danio rerio
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

Ethanol is a well-known teratogen. While this teratogenic potential is well-characterized clinically, the mechanisms through which ethanol exposure results in developmental defects remain unclear. Here we use the zebrafish model to elucidate eye-specific mechanisms that may underlie ethanol-mediated microphthalmia (reduced eye size), using time-series microarray analysis of gene expression of eye tissues of embryos exposed to 1.5% ethanol vs. untreated embryos. We identified 62 genes differentially expressed in ethanol-treated as compared to control zebrafish eyes from all sampling times over the period of retinal neurogenesis (24-48 hours post-fertilization). Application of the EDGE (extraction of differential gene expression) algorithm identified over 3000 genes differentially expressed over developmental time in ethanol-treated embryo eyes as compared to untreated embryo eyes. These lists included several genes indicating a mis-regulated cellular stress response (heat shock response) due to ethanol exposure. Combined treatment with sub-threshold levels of ethanol and a morpholino (MO) targeting heat shock factor 1 (hsf-1) mRNA resulted in a microphthalmic phenotype, suggesting convergent molecular pathways. Manipulation of the heat shock response by thermal preconditioning partially prevented ethanol-mediated microphthalmia while maintaining Hsf-1 expression. Together these data are consistent with roles for reduced Hsf-1 in mediating microphthalmic effects of embryonic ethanol exposure in zebrafish.

Publication Title

Eye-specific gene expression following embryonic ethanol exposure in zebrafish: roles for heat shock factor 1.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE47161
Expression data from visceral mesothelium (omentum) and parietal meosthelium
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Mesothelia, which cover all coelomic organs and body cavities in vertebrates, perform diverse functions in embryonic and adult life. Yet, mesothelia are traditionally viewed as simple, uniform epithelia.

Publication Title

Autotaxin signaling governs phenotypic heterogeneity in visceral and parietal mesothelia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP187597
Intrinsic Resistance to MEK Inhibition Through BET Protein Mediated Kinome
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Mutation or deletion of Neurofibromin (NF1), an inhibitor of RAS signaling, frequently occurs in epithelial ovarian cancer (EOC), supporting therapies that target downstream RAS effectors, such as the RAF-MEK-ERK pathway. However, no comprehensive studies have been carried out testing the efficacy of MEK inhibition in NF1-deficient EOC. Here, we performed a detailed characterization of MEK inhibition in NF1-deficient EOC cell lines using kinome profiling and RNA sequencing. Our studies showed MEK inhibitors were ineffective at providing durable growth inhibition in NF1-deficient cells due to kinome reprogramming. MEKi-mediated destabilization of FOSL1 resulted in induced expression of RTKs and their downstream RAF and PI3K signaling overcoming MEKi therapy. MEKi synthetic enhancement screens identified BRD2 and BRD4 as integral mediators of the MEKi-induced RTK signatures. Inhibition of BET proteins using BET bromodomain inhibitors (BETi) blocked MEKi-induced RTK reprogramming, indicating BRD2 and BRD4 represent promising therapeutic targets in combination with MEKi to block resistance due to kinome reprogramming in NF1-deficient EOC. Overall design: Examination of the global effects on transcription in response to trametinib (GSK212) in A1847 cells.

Publication Title

Intrinsic Resistance to MEK Inhibition through BET Protein-Mediated Kinome Reprogramming in NF1-Deficient Ovarian Cancer.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE53735
Expression data for murine colon carcinoma cell line CT26.WT stimulated with S100a8 or S100a9 recombinant protein
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Damage-associated molecular pattern (DAMP) molecules S100A8 and S100A9 with well-known functions in inflammation, tumor growth and metastasis. It has been found to have promote tumor cell proliferation activity at low concentration . However, the mechanism underlying this remains unclear. In the current study, we performed genome expression profiling analysis using the Affymetrix genome wide microarray system to identify broad scale changes in gene expression associated with S100a8 or S100a9 recombinant protein stimulation in murine colon carcinoma cell line CT26.WT.

Publication Title

Inflammation-induced S100A8 activates Id3 and promotes colorectal tumorigenesis.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact