refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1252 results
Sort by

Filters

Technology

Platform

accession-icon GSE1956
Mouse neuroblastoma Tcof1
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Genomewide analysis of gene expression associated with Tcof1 in mouse neuroblastoma. NB N1E-115 cells with wildtype, overexpression, knockdown of Tcof1.

Publication Title

Genomewide analysis of gene expression associated with Tcof1 in mouse neuroblastoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE20876
Effective Targeting of Quiescent Chronic Myelogenous Leukemia Stem Cells by Histone Deacetylase Inhibitors in Combination with Imatinib Mesylate
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We investigated the ability of HDAC inhibitors (HDACi) to target CML stem cells. Treatment with HDACi combined with IM effectively induced apoptosis in quiescent CML progenitors resistant to elimination by IM alone, and eliminated CML stem cells capable of engrafting immunodeficient mice. In vivo administration of HDACi with IM markedly diminished LSC in a transgenic mouse model of CML. The interaction of IM and HDACi inhibited genes regulating hematopoietic stem cell maintenance and survival. HDACi treatment represents a novel and effective strategy to target LSC in CML patients receiving tyrosine kinase inhibitors.

Publication Title

Effective targeting of quiescent chronic myelogenous leukemia stem cells by histone deacetylase inhibitors in combination with imatinib mesylate.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE22093
Expression data from breast cancer FNA biopsies from patients
  • organism-icon Homo sapiens
  • sample-icon 103 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

We assess if distinct biological processes might be associated with chemotherapy sensitivity in the different clinical subsets of breast cancers.

Publication Title

Gene pathways associated with prognosis and chemotherapy sensitivity in molecular subtypes of breast cancer.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE23988
Expression data from breast cancer FNA biopsies from patients (US samples)
  • organism-icon Homo sapiens
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

This is Phase II Trial of 4courses of 5-fluorouracil, doxorubicin and cyclophosphamide follwed by 4 additional courses of weekly docetaxel and capecitabine administered as Preoperative Therapy for Patients with Locally Advanced Breast Cancer, Stages II and III by US oncology (PROTOCOL 02-103)

Publication Title

Gene pathways associated with prognosis and chemotherapy sensitivity in molecular subtypes of breast cancer.

Sample Metadata Fields

Age, Disease stage

View Samples
accession-icon GSE30483
Tissue-specific genetic regulation of splicing and expression
  • organism-icon Homo sapiens
  • sample-icon 343 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Tissue-specific genetic control of splicing: implications for the study of complex traits.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE30422
Tissue-specific genetic regulation of splicing and expression (exon-level)
  • organism-icon Homo sapiens
  • sample-icon 172 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Numerous genome-wide screens for polymorphisms that influence gene expression have provided key insights into the genetic control of transcription. Despite this work, the relevance of specific polymorphisms to in vivo expression and splicing remains unclear. We carried out the first genome-wide screen, to our knowledge, for SNPs that associate with alternative splicing and gene expression in human primary cells, evaluating 93 autopsy-collected cortical brain tissue samples with no defined neuropsychiatric condition and 80 peripheral blood mononucleated cell samples collected from living healthy donors. We identified 23 high confidence associations with total expression and 80 with alternative splicing as reflected by expression levels of specific exons. Fewer than 50% of the implicated SNPs however show effects in both tissue types, reflecting strong evidence for distinct genetic control of splicing and expression in the two tissue types. The data generated here also suggest the possibility that splicing effects may be responsible for up to 13 out of 84 reported genome-wide significant associations with human traits. These results emphasize the importance of establishing a database of polymorphisms affecting splicing and expression in primary tissue types and suggest that splicing effects may be of more phenotypic significance than overall gene expression changes.

Publication Title

Tissue-specific genetic control of splicing: implications for the study of complex traits.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE30453
Tissue-specific genetic regulation of splicing and expression (gene-level)
  • organism-icon Homo sapiens
  • sample-icon 171 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Numerous genome-wide screens for polymorphisms that influence gene expression have provided key insights into the genetic control of transcription. Despite this work, the relevance of specific polymorphisms to in vivo expression and splicing remains unclear. We carried out the first genome-wide screen, to our knowledge, for SNPs that associate with alternative splicing and gene expression in human primary cells, evaluating 93 autopsy-collected cortical brain tissue samples with no defined neuropsychiatric condition and 80 peripheral blood mononucleated cell samples collected from living healthy donors. We identified 23 high confidence associations with total expression and 80 with alternative splicing as reflected by expression levels of specific exons. Fewer than 50% of the implicated SNPs however show effects in both tissue types, reflecting strong evidence for distinct genetic control of splicing and expression in the two tissue types. The data generated here also suggest the possibility that splicing effects may be responsible for up to 13 out of 84 reported genome-wide significant associations with human traits. These results emphasize the importance of establishing a database of polymorphisms affecting splicing and expression in primary tissue types and suggest that splicing effects may be of more phenotypic significance than overall gene expression changes.

Publication Title

Tissue-specific genetic control of splicing: implications for the study of complex traits.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE81471
Expression data from ectopic PTHLH over-expression in Ca9-22 cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To exmaine the PTHLH stimulated genes in Ca9-22 cells, we preformed the Affymetrix Human Genome U133 Plus 2.0 Array with empty vector or PTHLH expression vector. The raw data were normalized by GeneSpring GX software and up-load with raw values.

Publication Title

Parathyroid Hormone-Like Hormone is a Poor Prognosis Marker of Head and Neck Cancer and Promotes Cell Growth via RUNX2 Regulation.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP089693
Nono, a novel bivalent domain factor, regulates Erk signaling and mouse embryonic stem cell pluripotency [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Here we report that Nono instead functions as a chromatin regulator cooperating with Erk to regulate mESC pluripotency. We demonstrate that Nono loss leads to robust self-renewing mESCs with enhanced expression of Nanog and Klf4, epigenome and transcriptome re-patterning to a “ground-like state” with global reduction of H3K27me3 and DNA methylation resembling the Erk inhibitor PD03 treated mESCs and 2i (both GSK and Erk kinase inhibitors)-induced “ground state”. Mechanistically, Nono and Erk co-bind at a subset of development-related, bivalent genes. Ablation of Nono compromises Erk activation and RNA polymerase II C-terminal Domain serine 5 phosphorylation, and while inactivation of Erk evicts Nono from chromatin, revealing reciprocal regulation. Furthermore, Nono loss results in a compromised activation of its target bivalent genes upon differentiation and the differentiation itself. These findings reveal an unanticipated role of Nono in collaborating with Erk signaling to regulate the integrity of bivalent domain and mESC pluripotency. Overall design: mRNA-seq of parental and Nono-KO mES cells

Publication Title

Nono, a Bivalent Domain Factor, Regulates Erk Signaling and Mouse Embryonic Stem Cell Pluripotency.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE74137
Expression data from ectopic RUNX2 over-expression in Ca9-22 cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To examine the transcription targets of RUNX2 in OSCC cells, we preformed the Affymetrix Human Genome U133 Plus 2.0 Array with ectopic RUNX2 or empty vectors in Ca9-22 cells.

Publication Title

Dysregulation of RUNX2/Activin-A Axis upon miR-376c Downregulation Promotes Lymph Node Metastasis in Head and Neck Squamous Cell Carcinoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact