refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1252 results
Sort by

Filters

Technology

Platform

accession-icon GSE31875
Gene and pathways affected by CAG-repeat RNA-based toxicity in Drosophila
  • organism-icon Drosophila melanogaster
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Spinocerebellar ataxia type 3 (SCA3) is one of the polyglutamine (polyQ) diseases, which are caused by a CAG repeat expansion within the coding region of the associated genes.

Publication Title

Genes and pathways affected by CAG-repeat RNA-based toxicity in Drosophila.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE51562
Zygotic expression of Exostosin1 (Ext1) is required for establishment of dorsal-ventral pattern in Xenopus
  • organism-icon Xenopus laevis
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Xenopus laevis Genome 2.0 Array (xlaevis2)

Description

Exostosin 1 (Ext1) is a glycosyltransferase involved in the biosynthesis of the extracellular matrix Heparan Sulfate Proteoglycan (HSPG). Knockdown of Ext1 caused gastrulation defects and formation of an abnormal body axis. Since ext1 has been implicated as an indirect contributor to multiple signaling pathways in vertebrate development, microarray was used to identify genes expressed in gastrulae that would be affected by a reduction in ext1 expression. Microarray-based comparisons of gene expression in control vs. Ext1 MO embryos showed that Ext1 is involved in regulating genes that are related to metabolic process, development and signaling pathways. Half of the hits from the microarray are uncharacterized genes. Approximately forty-five percent of genes are related to metabolic process and thirty percent of genes are belonged to signaling and developmental process categories. Ten percent of each up-regulated and down-regulated gene set is predicted to function in establishment of localization by GO, which is consistent with EXT1 being involved in the movement of extracellular substances. The transcription factors or signaling protein, Isl1, Pitx2, TBX5A, Wnt5A, Wnt7A, WT1, Pax3, Wnt1, and Xbra were identified as Ext1 regulated genes. This analysis investigating the role of Ext1 during gastrulation and provide the information that EXT1 plays an important role in Xenopus early development. Exostosin 1 (EXT1) is a glycosyltransferase involved in the biosynthesis of the extracellular matrix Heparan Sulfate Proteoglycan (HSPG). Knockdown of EXT1 caused gastrulation defects and formation of an abnormal body axis. Since ext1 has been implicated as an indirect contributor to multiple signaling pathways in vertebrate development, microarray was used to identify genes expressed in gastrulae that would be affected by a reduction in ext1 expression. Microarray-based comparisons of gene expression in control vs. EXT1 MO embryos showed that EXT1 is involved in regulating genes that are related to metabolic process, development and signaling pathways. Half of the hits from the microarray are uncharacterized genes. Approximately forty-five percent of genes are related to metabolic process and thirty percent of genes are belonged to signaling and developmental process categories. Ten percent of each up-regulated and down-regulated gene set is predicted to function in establishment of localization by GO, which is consistent with EXT1 being involved in the movement of extracellular substances. The transcription factors or signaling protein, Isl1, Pitx2, TBX5A, Wnt5A, Wnt7A, WT1, Pax3, Wnt1, and Xbra were identified as EXT1 regulated genes. This analysis investigating the role of EXT1 during gastrulation and provide the information that EXT1 plays an important role in Xenopus early development.

Publication Title

Zygotic expression of Exostosin1 (Ext1) is required for BMP signaling and establishment of dorsal-ventral pattern in Xenopus.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE81471
Expression data from ectopic PTHLH over-expression in Ca9-22 cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To exmaine the PTHLH stimulated genes in Ca9-22 cells, we preformed the Affymetrix Human Genome U133 Plus 2.0 Array with empty vector or PTHLH expression vector. The raw data were normalized by GeneSpring GX software and up-load with raw values.

Publication Title

Parathyroid Hormone-Like Hormone is a Poor Prognosis Marker of Head and Neck Cancer and Promotes Cell Growth via RUNX2 Regulation.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE21104
Expression analysis of miR-499 transgenic heart
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

microRNAs are small non-coding RNAs that can affect gene expression. We used microarrays to analyze gene expression in miR-499 transgenic mouse hearts.

Publication Title

Elevated miR-499 levels blunt the cardiac stress response.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE74137
Expression data from ectopic RUNX2 over-expression in Ca9-22 cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To examine the transcription targets of RUNX2 in OSCC cells, we preformed the Affymetrix Human Genome U133 Plus 2.0 Array with ectopic RUNX2 or empty vectors in Ca9-22 cells.

Publication Title

Dysregulation of RUNX2/Activin-A Axis upon miR-376c Downregulation Promotes Lymph Node Metastasis in Head and Neck Squamous Cell Carcinoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP083323
Hhex regulates HSC self-renewal and stress hematopoiesis via repression of Cdkn2a
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The Hematopoietically-expressed homeobox transcription factor (Hhex) is important for the maturation of definitive hematopoietic progenitors and B-cells during development. We have recently shown that in adult hematopoiesis, Hhex is dispensable for maintenance of hematopoietic stem cells (HSCs) and myeloid lineages but essential for the commitment of Common Lymphoid Progenitors (CLPs) to lymphoid lineages. However, whether Hhex plays a role in HSC self-renewal and myeloid expansion during hematopoietic stress is unknown. Here we show that during serial bone marrow transplantation, Hhex-deleted HSCs are progressively lost, revealing an intrinsic defect in HSC self-renewal. Moreover, Hhex-deleted mice show markedly impaired hematopoietic recovery following myeloablation. In vitro, Hhex-null blast colonies were incapable of replating, implying a specific requirement for Hhex in immature hematopoietic progenitors. Transcriptome analysis of Hhex-null Lin-Sca+Kit+ (LSK) cells showed that Hhex deletion leads to the deregulation of Polycomb Repressive Complex 2 (PRC2) target genes, including an upregulation of Cdkn2a locus, encoding the cell cycle repressors p16Ink4a and p19Arf. Indeed, loss of Cdkn2a restored Hhex-null blast colony replating in vitro, as well as hematopoietic reconstitution following myeloablation in vivo. Thus, HSCs require Hhex to repress Cdkn2a to enable continued self-renewal and response to hematopoietic stress. Overall design: Transcriptional profiling of Hhex-deleted and wild-type LSK cells using RNA sequencing

Publication Title

Hhex Regulates Hematopoietic Stem Cell Self-Renewal and Stress Hematopoiesis via Repression of Cdkn2a.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE58255
Genome-wide analysis of the Integrator complex
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Integrator regulates transcriptional initiation and pause release following activation.

Sample Metadata Fields

Disease, Cell line, Treatment

View Samples
accession-icon GSE58254
Genome-wide analysis of the Integrator complex (BeadChip)
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

We investigated the genomic occupancy of INTS11, in normal condition and after stimulation of EGF. Total RNAPII was profiled in the presence or absence of INTS11, along with the Super Elongation Complex proteins AFF4 and ELL2. Additionally, we extensively examined the transcriptional response to EGF, before and after depletion of INTS11, using RNA-seq on ribosome-depleted total RNA and Global Run-on sequencing (GRO-seq).

Publication Title

Integrator regulates transcriptional initiation and pause release following activation.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE28687
Defective K-Ras Oncoproteins Initiate Cancer In Vivo and Evolve to Overcome Impaired Effector Binding
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The oncogenic proteins expressed in human cancer cells are exceedingly difficult targets for drug discovery due to intrinsic properties of the Ras GTPase switch. As a result, recent efforts have largely focused on inhibiting Ras-regulated kinase effector cascades, particularly the Raf/MEK/ERK and PI3 kinase/Akt/mTOR pathways. We constructed murine stem cell leukemia virus (MSCV) vectors encoding oncogenic K-RasD12 with additional second site amino acid substitutions that that impair PI3 kinase/Akt or Raf/MEK/ERK activation and performed bone marrow transduction/transplantation experiments in mice. In spite of attenuated signaling properties, defective K-Ras oncoproteins induced aggressive clonal T lineage acute lymphoblastic leukemia (T-ALL). These leukemias exhibited a high frequency of somatic Notch1 mutations, which is also true of human T-ALL. Multiple independent T-ALLs restored full oncogenic Ras activity by acquiring third site mutations within the viral KrasD12 transgenes. Other leukemias with undetectable PTEN and elevated phosphoryated Akt levels showed a similar gene expression profile to human early T progenitor (ETP) T-ALL. Expressing oncoproteins that are defective for specific functions is a general strategy for assessing requirements for tumor maintenance and uncovering potential mechanisms of drug resistance in vivo. In addition, our observation that defective Kras oncogenes regain potent cancer initiating activity strongly supports simultaneously targeting distinct components of Ras signaling networks in the substantial fraction of cancers with RAS mutations.

Publication Title

Defective K-Ras oncoproteins overcome impaired effector activation to initiate leukemia in vivo.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP050076
Deregulation of the Ras-Erk Signaling Axis Modulates the Enhancer Landscape [RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 33 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Unrestrained receptor tyrosine kinase (RTK) signaling and epigenetic deregulation are root causes of tumorigenesis. We establish linkage between these processes by demonstrating that aberrant RTK signaling unleashed by oncogenic HRasG12V or loss of negative feedback through Sprouty gene deletion remodels histone modifications associated with active typical and super-enhancers. However, while both lesions disrupt the Ras-Erk axis, the expression programs, enhancer signatures, and transcription factor networks modulated upon HRasG12V-transformation or Sprouty deletion are largely distinct. Oncogenic HRasG12V elevates histone 3 lysine 27 acetylation (H3K27ac) levels at enhancers near the transcription factor Gata4 and the kinase Prkcb, as well as their expression levels. We show that Gata4 is necessary for the aberrant gene expression and H3K27ac marking at enhancers, and Prkcb is required for the oncogenic effects of HRasG12V-driven cells. Taken together, our findings demonstrate that dynamic reprogramming of the cellular enhancer landscape is a major effect of oncogenic RTK signaling. Overall design: We assessed gene expression changes upon loss of feedback regulation through Sprouty (Spry) deletion, and upon unrestrained signaling driven by mutant oncogenes. RNA-seq was performed in biological triplicate; replicate number is included in the sample name. Spry124fl/fl (VEC) and Spry124-/- (CRE) MEFs were profiled in three conditions: unsynchronized (U), serum starved (S), and serum starved and FGF treated (F). Spry124fl/fl (VEC) MEFs transduced with empty vector (EV) control or the indicated oncogenes (KRasG12V, HRasG12V, and BRafV600E) as well as Spry124-/- (CRE) MEFs transduced with EV control were profiled in the unsynchronized state.

Publication Title

Deregulation of the Ras-Erk Signaling Axis Modulates the Enhancer Landscape.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact