refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 2800 results
Sort by

Filters

Technology

Platform

accession-icon GSE59241
Expression data from mouse CD4+ T cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Hydrogen sulfide (H2S) is an endogenous gasotransmitter and is capable of regulating various endogenous signaling pathways, inculding inflamation and immune response. In mammals, H2S is mainly generated by two pyridoxal-5'-phosphate-dependent enzymes, termed cystathionine -synthase (CBS) and cystathionine -lyase (CSE). CBS-deficient mice showed autoimmune disorders. H2S play important roles in T cell development and differentiation, especially Treg cells development and differentiation.

Publication Title

Hydrogen Sulfide Promotes Tet1- and Tet2-Mediated Foxp3 Demethylation to Drive Regulatory T Cell Differentiation and Maintain Immune Homeostasis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17941
A Transcriptional Signature and Common Gene Networks Link Cancer with Metabolic Syndrome and Auto-immune Diseases
  • organism-icon Homo sapiens
  • sample-icon 49 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Epidemiological studies have revealed concurrence of specific cancers with other disease states such as metabolic syndrome, inflammatory disease and autoimmune disease. Patients with these chronic conditions have a higher incidence of various cancers, more aggressive tumors, and a higher mortality rate. It has been proposed that obesity, inflammation and chronic disease should be correlated with cancer at the molecular level, but common gene signatures or networks have yet to be described. Here, we identify genes regulated during the process of cellular transformation in both a breast epithelial cell line and a set of isogenic fibroblastic cell lines.

Publication Title

A transcriptional signature and common gene networks link cancer with lipid metabolism and diverse human diseases.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE24633
Cdx2 transcription factor binding in intestinal villus and gene expression profiling in Cdx mutant mice
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

We conditionally inactivated mouse Cdx2, a dominant regulator of intestinal development, and mapped its genome occupancy in adult intestinal villi. Although homeotic transformation, observed in Cdx2-null embryos, was absent in mutant adults, gene expression and cell morphology were vitally compromised. Lethality was accelerated in mice lacking both Cdx2 and its homolog Cdx1, with exaggeration of defects in crypt cell replication and enterocyte differentiation. Cdx2 occupancy correlated with hundreds of transcripts that fell but not with equal numbers that rose with Cdx loss, indicating a predominantly activating role at intestinal cis-regulatory regions. Integrated consideration of a mutant phenotype and cistrome hence reveals the continued and distinct requirement in adults of a master developmental regulator that activates tissue-specific genes.

Publication Title

Essential and redundant functions of caudal family proteins in activating adult intestinal genes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP050988
Transcriptome analyses of dBRWD3 mutant, and dBRWD3, yem double mutant brain
  • organism-icon Drosophila melanogaster
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

We report the high-throughput profiling of brain RNA from three Drosophila stains: dBRWD3PX2/+, dBRWD3PX2/PX2 and dBRWD3PX2/PX2, yemGS21861/GS21861. By obtaining over 50 million reads of sequence, WE compared the transcriptomic differences among the brains from these three stains. We found that the expression of 871 genes was significantly different between heterozygous control and homozygous dBRWD3 mutant brains (484 upregulated genes, 387 downregulated genes, p<0.05). Gene ontology (GO) analysis of the 871 genes revealed a broad spectrum of biological processes, ranging from synaptic activity to housekeeping metabolism subjective to dBRWD3 regulation. Among the 387 downregulated genes, the expression of 360 genes (92.8%) was increased in the dBRWD3, yem double mutant brains compared with dBRWD3 mutant. Among the 484 upregulated genes, the expression of 412 genes (85.1%) was decreased in the double mutant brains. These differential genes were evenly distributed on X chromosome and autosomes (149 on X, 178 on 2L, 154 on 2R, 166 on 3L, and 207 on 3R). These analyses indicate that dBRWD3 regulates gene expression in the brain mainly through the HIRA/YEM complex. Overall design: Examination of brain transcriptome in 3 Drosophila strains.

Publication Title

Intellectual disability-associated dBRWD3 regulates gene expression through inhibition of HIRA/YEM-mediated chromatin deposition of histone H3.3.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE34568
The transcription factor CDX2 maintains active enhancer in intestinal villus cells in vivo
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Intestinal master transcription factor CDX2 controls chromatin access for partner transcription factor binding.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34567
The transcription factor CDX2 maintains active enhancer in intestinal villus cells in vivo (expression data)
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We established whether partner transcription factor binding, chromatin structure, or gene expression is compromised upon loss of partner factors cdx2 or hnf4a in mouse intestinal villi

Publication Title

Intestinal master transcription factor CDX2 controls chromatin access for partner transcription factor binding.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP136067
Regulation of follicular T-helper cell positioning and function by PD-1
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Follicular T-helper (TFH) cells highly express the programmed cell death-1 (PD-1) molecule. Whereas inhibition of T cell receptor (TCR) signaling and CD28 co-stimulation is thought to be the primary mode of PD-1 functions, how PD-1 regulates TFH development and function remains unclear. Here we show that, when engaged by the ensemble of bystander B cells constitutively expressing PD-1 ligand 1 (PD-L1), PD-1 inhibits T-cell recruitment into follicles. This inhibition involves suppression of PI3K activities downstream of follicle-guidance receptor CXCR5, is independent from co-signaling with the TCR, and necessitates ICOS signaling to overcome. PD-1 further restricts CXCR3 upregulation on TFH cells, serving to concentrate these cells toward the GC territory, where PD-L1-PD-1 interactions between individual TFH and B cells optimize B-cell competition and affinity maturation. Therefore, operating in both costimulation-independent and -dependent manners, PD-1 plays an integral role in orchestrating tissue positioning and function of TFH cells. Overall design: Differential expression analysis between WT and Pdcd1KI/KI CXCR5hi Tfh cells

Publication Title

PD-1 Controls Follicular T Helper Cell Positioning and Function.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon GSE39009
Expression data from mouse skeletal muscle
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

We generated skeletal muscle-specific knockout mice lacking the transcription factor Yin Yang 1 (YY1) and analyzed expression patterns in the skeletal muscle these mice.

Publication Title

Defective mitochondrial morphology and bioenergetic function in mice lacking the transcription factor Yin Yang 1 in skeletal muscle.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE76443
Gene expression data from SW1990 cells stably expressing Fbw7
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Fbw7 plays a negative role in pancreatic cancer tumorigenesis and progression. To further clarify the function and mechanism that Fbw7 plays in pancreatic cancer,mRNA microarray assays were performed to identify the genes and signaling pathways that were changed upon Fbw7 overexpression.

Publication Title

FBW7 (F-box and WD Repeat Domain-Containing 7) Negatively Regulates Glucose Metabolism by Targeting the c-Myc/TXNIP (Thioredoxin-Binding Protein) Axis in Pancreatic Cancer.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE23436
Histone methylation and transcription factor binding during intestinal cell differentation
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Cell differentiation requires epigenetic modulation of tissue-specific genes and activities of master transcriptional regulators, which are recognized for their dominant control over cellular programs. Using novel epigenomic methods, we characterized enhancer elements specifically modified in differentiating intestinal epithelial cells and found enrichment of transcription factor-binding motifs corresponding to CDX2, a master regulator of the intestine. Directed investigation revealed surprising lability in CDX2 occupancy of the genome, with redistribution from hundreds of sites occupied only in progenitors to thousands of new sites in mature cells. Knockout mice confirmed distinct Cdx2 requirements in dividing and differentiated adult intestinal cells, including responsibility for the active enhancer configuration associated with maturity. Dynamic CDX2 occupancy corresponds with condition-specific gene expression and, importantly, to differential co-occupancy with other tissue-restricted transcription factors: HNF4A in mature cells and GATA6 in progenitors. These results reveal dynamic, context-specific functions and mechanisms of a master transcription factor within a cell lineage.

Publication Title

Differentiation-specific histone modifications reveal dynamic chromatin interactions and partners for the intestinal transcription factor CDX2.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact