refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1252 results
Sort by

Filters

Technology

Platform

accession-icon GSE5816
A Genome-wide Screen for Hypermethylated Genes in Lung Cancer
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Abstract

Publication Title

A genome-wide screen for promoter methylation in lung cancer identifies novel methylation markers for multiple malignancies.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6695
Genome-wide screen for promoter methylation in NSCLC identifies novel methylation markers for multiple malignancies
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

BACKGROUND: Promoter hypermethylation coupled with loss of heterozygosity at the same locus results in loss of gene function in many tumor cells. The "rules" governing which genes are methylated during the pathogenesis of individual cancers, how specific methylation profiles are initially established, or what determines tumor type-specific methylation are unknown. However, DNA methylation markers that are highly specific and sensitive for common tumors would be useful for the early detection of cancer, and those required for the malignant phenotype would identify pathways important as therapeutic targets. METHODS AND FINDINGS: In an effort to identify new cancer-specific methylation markers, we employed a high-throughput global expression profiling approach in lung cancer cells. We identified 132 genes that have 5' CpG islands, are induced from undetectable levels by 5-aza-2'-deoxycytidine in multiple non-small cell lung cancer cell lines, and are expressed in immortalized human bronchial epithelial cells. As expected, these genes were also expressed in normal lung, but often not in companion primary lung cancers. Methylation analysis of a subset (45/132) of these promoter regions in primary lung cancer (n = 20) and adjacent nonmalignant tissue (n = 20) showed that 31 genes had acquired methylation in the tumors, but did not show methylation in normal lung or peripheral blood cells. We studied the eight most frequently and specifically methylated genes from our lung cancer dataset in breast cancer (n = 37), colon cancer (n = 24), and prostate cancer (n = 24) along with counterpart nonmalignant tissues. We found that seven loci were frequently methylated in both breast and lung cancers, with four showing extensive methylation in all four epithelial tumors. CONCLUSIONS: By using a systematic biological screen we identified multiple genes that are methylated with high penetrance in primary lung, breast, colon, and prostate cancers. The cross-tumor methylation pattern we observed for these novel markers suggests that we have identified a partial promoter hypermethylation signature for these common malignancies. These data suggest that while tumors in different tissues vary substantially with respect to gene expression, there may be commonalities in their promoter methylation profiles that represent targets for early detection screening or therapeutic intervention.

Publication Title

A genome-wide screen for promoter methylation in lung cancer identifies novel methylation markers for multiple malignancies.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE49701
Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Technologies allowing for specific regulation of endogenous genes are valuable for the study of gene functions and have great potential in therapeutics. We created the CRISPR-on system, a two-component transcriptional activator consisting of a nuclease-dead Cas9 (dCas9) protein fused with a transcriptional activation domain and single guide RNAs (sgRNAs) with complementary sequence to gene promoters. We demonstrate that CRISPR-on can efficiently activate exogenous reporter genes in both human and mouse cells in a tunable manner. In addition, we show that robust reporter gene activation in vivo can be achieved by injecting the system components into mouse zygotes. Furthermore we show that CRISPR-on can activate the endogenous IL1RN, SOX2, and OCT4 genes. The most efficient gene activation was achieved by clusters of 3 to 4 sgRNAs binding to the proximal promoters suggesting their synergistic action in gene induction. Significantly, when sgRNAs targeting multiple genes were simultaneously introduced into cells, robust multiplexed endogenous gene activation was achieved. Genome-wide expression profiling demonstrated high specificity of the system.

Publication Title

Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE24633
Cdx2 transcription factor binding in intestinal villus and gene expression profiling in Cdx mutant mice
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

We conditionally inactivated mouse Cdx2, a dominant regulator of intestinal development, and mapped its genome occupancy in adult intestinal villi. Although homeotic transformation, observed in Cdx2-null embryos, was absent in mutant adults, gene expression and cell morphology were vitally compromised. Lethality was accelerated in mice lacking both Cdx2 and its homolog Cdx1, with exaggeration of defects in crypt cell replication and enterocyte differentiation. Cdx2 occupancy correlated with hundreds of transcripts that fell but not with equal numbers that rose with Cdx loss, indicating a predominantly activating role at intestinal cis-regulatory regions. Integrated consideration of a mutant phenotype and cistrome hence reveals the continued and distinct requirement in adults of a master developmental regulator that activates tissue-specific genes.

Publication Title

Essential and redundant functions of caudal family proteins in activating adult intestinal genes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34568
The transcription factor CDX2 maintains active enhancer in intestinal villus cells in vivo
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Intestinal master transcription factor CDX2 controls chromatin access for partner transcription factor binding.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34567
The transcription factor CDX2 maintains active enhancer in intestinal villus cells in vivo (expression data)
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We established whether partner transcription factor binding, chromatin structure, or gene expression is compromised upon loss of partner factors cdx2 or hnf4a in mouse intestinal villi

Publication Title

Intestinal master transcription factor CDX2 controls chromatin access for partner transcription factor binding.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE46995
Molecular signature with high accuracy for biliary atresia identifies a role for Interleukin-8 in pathogenesis of disease
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 110 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st), Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Gene expression signature for biliary atresia and a role for interleukin-8 in pathogenesis of experimental disease.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE46960
Comprehensive gene expression profile of human livers from patients with biliary atresia at the time of diagnosis and the corresponding disease and normal controls
  • organism-icon Homo sapiens
  • sample-icon 92 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Liver biopsy samples were obtained from 64 infants with biliary atresia at the time of intraoperative cholangiogram. Liver biopsy samples were obtained from 14 age-matched infants with other causes of intrahepatic cholestasis, and from 7 deceased-donor children. GeneChip Human Gene 1.0 ST Array (Affymetrix, CA) were used to screen mRNAs whose expression was specifically regulated in the livers from patients with biliary atresia.

Publication Title

Gene expression signature for biliary atresia and a role for interleukin-8 in pathogenesis of experimental disease.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE46967
Comprehensive gene expression profile of extrahepatic bile ducts in mice with experimental biliary atresia
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st), Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Newborn Balb/c mice were injected intraperitoneally with 1.5x10^6 fluorescent-forming units (ffu) of type- A Rhesus Rotavirus (RRV) or 0.9% normal saline (NS; control) within 24 hours of birth to induce experimental model of biliary atresia. Extrahepatic bile ducts including gallbladder were microdissected en bloc at 3, 7 and 14 days after RRV or saline injections. GeneChip Mouse Gene 1.0 ST Array (Affymetrix, CA) were used to screen mRNAs whose expression was differently regulated after RRV challenge compared to normal saline controls.

Publication Title

Gene expression signature for biliary atresia and a role for interleukin-8 in pathogenesis of experimental disease.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE40648
Effect of simulated microgravity on E. coli K12 MG1655 growth and gene expression
  • organism-icon Escherichia coli str. k-12 substr. mg1655
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

This study demonstrates simulated microgravity effects on E. coli K 12 MG1655 when grown on LB medium supplemented with glycerol. The results imply that E. coli readily reprograms itself to combat the multiple stresses imposed due to microgravity. Under these conditions it survives by upregulating oxidative stress protecting genes and simultaneously down regulating the membrane transporters and synthases to maintain cell homeostasis.

Publication Title

Effect of simulated microgravity on E. coli K12 MG1655 growth and gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact