refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 34 results
Sort by

Filters

Technology

Platform

accession-icon GSE21299
Expression data from murine cell line transduced with epitope tagged forms of Hoxa9
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Importantly increasing evidence shows that Hox genes such as Hoxa9 are key regulators of stem cell self-renewal and hematopoiesis. Hoxa9 is expressed in early hematopoietic progenitor cells and promotes stem cell expansion. In contrast Hoxa9 down regulation is associated with hematopoietic differentiation. In addition to its role in development, HOXA9 has been intensively studied because of its central role in human acute leukemias. Despite their obvious biomedical importance, the mechanisms through which Hoxa9 and its partner proteins exert their downstream functions are poorly understood.

Publication Title

The PAF complex synergizes with MLL fusion proteins at HOX loci to promote leukemogenesis.

Sample Metadata Fields

Sex, Specimen part, Cell line, Time

View Samples
accession-icon GSE33518
Identification and characterization of Hoxa9 binding sites in hematopoietic cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification and characterization of Hoxa9 binding sites in hematopoietic cells.

Sample Metadata Fields

Sex, Specimen part, Cell line, Time

View Samples
accession-icon GSE36923
Microarray Gene Expression for Undifferentiated Mesenchymal Stem Cells, Adipogenically Differentiated and Dedifferentiation cells
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Bone marrow mesenchymal stem cells (MSC) were adipogenically differentiated followed by dedifferentiation. We are interested to know the new fat markers, adipogenic signaling pathways and dedifferentiation signaling pathways.Furthermore we are also intrested to know that how differentiated cells convert into dedifferentiated progenitor cells. To address these questions, MSC were adipogenically differentiated, followed by dedifferentiation. Finally these dedifferentiated cells were used for adipogenesis, osteogenesis and chondrogenesis. Histology, FACS, qPCR and GeneChip analyses of undifferentiated, adipogenically differentiated and dedifferentiated cells were performed. Regarding the conversion of adipogenically differentiated cells into dedifferentiated cells, gene profiling and bioinformatics demonstrated that upregulation (DHCR24, G0S2, MAP2K6, SESN3) and downregulation (DST, KAT2, MLL5, RB1, SMAD3, ZAK) of distinct genes play a curcial role in cell cycle to drive the adipogenically differentiated cells towards an arrested state to narrow down the lineage potency. However, the upregulation (CCND1, CHEK, HGF, HMGA2, SMAD3) and downregulation (CCPG1, RASSF4, RGS2) of these cell cycle genes motivates dedifferentiation of adipogenically differentiated cells to reverse the arrested state. We also found new fat markers along with signaling pathways for adipogenically differentiated and dedifferentiated cells, and also observed the influencing role of proliferation associated genes in cell cycle arrest and progression.

Publication Title

Transdifferentiation of adipogenically differentiated cells into osteogenically or chondrogenically differentiated cells: phenotype switching via dedifferentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE16464
Chondrogenic differentiation potential of OA chondrocytes and their use in autologous chondrocyte transplantation
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Autologous chondrocyte transplantation (ACT) is a routine technique to regenerate focal cartilage lesions. However, patients with osteoarthritis (OA) are lacking an appropriate long-lasting treatment alternative, partly since it is not known if chondrocytes from OA patients have the same chondrogenic differentiation potential as chondrocytes from donors not affected by OA. Articular chondrocytes from patients with OA undergoing total knee replacement (Mankin Score >3, Ahlbck Score >2) and from patients undergoing ACT, here referred to as normal donors (ND), were isolated applying protocols used for ACT. Their chondrogenic differentiation potential was evaluated both in high-density pellet and scaffold (Hyaff-11) cultures by histological proteoglycan assessment (Bern Score) and immunohistochemistry for collagen types I and II. Chondrocytes cultured in monolayer and scaffolds were subjected to gene expression profiling using genome-wide oligonucleotide microarrays. Expression data were verified by using quantitative RT-PCR. Chondrocytes from ND and OA donors demonstrated accumulation of comparable amounts of cartilage matrix components, including sulphated proteoglycans and collagen types I and II. The mRNA expression of cartilage markers (COL2A1, COMP, aggrecan, CRTL1, SOX9) and genes involved in matrix synthesis (biglycan, COL9A2, COL11A1, TIMP4, CILP2) was highly induced in 3D cultures of chondrocytes from both donor groups. Genes associated with hypertrophic or OA cartilage (COL10A1, RUNX2, periostin, ALP, PTHR1, MMP13, COL1A1, COL3A1) were not significantly regulated between the two groups of donors. The expression of 661 genes, including COMP, FN1, and SOX9, were differentially regulated between OA and ND chondrocytes cultured in monolayer. During scaffold culture, the differences diminished between the OA and ND chondrocytes, and only 184 genes were differentially regulated. Only few genes were differentially expressed between OA and ND chondrocytes in Hyaff-11 culture. The risk of differentiation into hypertrophic cartilage does not seem to be increased for OA chondrocytes. Our findings suggest that the chondrogenic capacity is not significantly affected by OA and OA chondrocytes fulfill the requirements for matrix-associated ACT.

Publication Title

Chondrogenic differentiation potential of osteoarthritic chondrocytes and their possible use in matrix-associated autologous chondrocyte transplantation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE12860
Antirheumatic Drug Response in Human Chondrocytes: Potential Molecular Targets to Stimulate Cartilage Regeneration
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Rheumatoid arthritis (RA) leads to progressive destruction of articular structures. Despite recent progress in controlling inflammation and pain, little cartilage repair has yet been observed. This in vitro study aims to determine the role of chondrocytes in RA-related cartilage destruction and antirheumatic drug-related regenerative processes. Human chondrocytes were three-dimensionally cultured in alginate beads. To determine the RA-induced gene expression pattern, human chondrocytes were stimulated with supernatant of RA synovial fibroblasts (RASF) and normal donor synovial fibroblasts (NDSF), respectively. To examine antirheumatic drug response signatures, human chondrocytes were stimulated with supernatant of RASF that have been treated with disease-modifying antirheumatic drugs (DMARD; azathioprine, sodium aurothiomalate, chloroquine phosphate, methotrexate), non-steroidal anti-inflammatory drugs (NSAID; piroxicam, diclofenac) or steroidal anti-inflammatory drugs (SAID; methylprednisolone, prednisolone). Genome-wide expression profiling with oligonucleotide microarrays was used to determine differentially expressed genes. Real-time RT-PCR and ELISA were performed for validation of microarray data. Following antirheumatic treatment, microarray analysis disclosed a reverted expression of 94 RA-induced chondrocyte genes involved in inflammation/NF-B signalling, cytokine/chemokine activity, immune response, proliferation/differentiation and matrix remodelling. Hierarchical clustering analysis showed that treatment of RASF with the DMARD azathioprine, gold sodium thiomalate and methotrexate resulted in chondrocyte gene expression signatures that were closely related to the healthy pattern. Treatment with the SAID methylprednisolone and prednisolone strongly reverted the RA-related chondrocyte gene expression, in particular the expression of genes involved in inflammation/NF-B and cytokine/chemokine activity. The NSAID piroxicam and diclofenac and the DMARD chloroquine phosphate had only moderate to marginal effects. Pathway analysis determined major mechanisms of drug action, for example pathways of cytokine-cytokine receptor interaction, TGF-/TLR/Jak-STAT signalling and ECM-receptor interaction were targeted. This in vitro study provides a comprehensive molecular insight into the antirheumatic drug response signatures in human chondrocytes, thereby revealing potential molecular targets, pathways and mechanisms of drug action involved in chondrocyte regeneration. Thus, the present study may contribute to the development of novel therapeutic chondro-protective compounds and strategies.

Publication Title

Antirheumatic drug response signatures in human chondrocytes: potential molecular targets to stimulate cartilage regeneration.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10024
Key Regulatory Molecules of Cartilage Destruction in Rheumatoid Arthritis: An in vitro Study
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

We have studied the expression profile of 3D cultured human chondrocytes that were stimulated with supernatant of synovial fibroblasts derived from a RA patient (RASF=HSE cell line) and from a normal donor (NDSF=K4IM cell line), respectively. For this purpose, passage 2 human chondrocytes were cultured for 14 days in alginate beads and subsequently stimulated for 48 hours with supernatant of RASF and NDSF. Baseline expression was determined of unstimulated chondrocytes. Differential genome-wide microarray analysis of RASF and NDSF stimulated chondrocytes disclosed a distinct expression profile related to cartilage destruction involving marker genes of inflammation (COX-2), NF-kappa B signaling pathway (TLR2), cytokines/chemokines and receptors (CXCL1-3, CCL20, CXCL8, CXCR4, IL-6, IL-1beta), matrix degradation (MMP-10, MMP-12) and suppressed matrix synthesis (COMP). Thus, transcriptome profiling of RASF and NDSF stimulated chondrocytes revealed a disturbed catabolic-anabolic homeostasis of chondrocyte function. This study provides a comprehensive insight into the molecular regulatory processes induced in human chondrocytes during RA-related cartilage destruction.

Publication Title

Key regulatory molecules of cartilage destruction in rheumatoid arthritis: an in vitro study.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE39197
Gene expression profiling of NK cells isolated from the pancreas of BDC TCR expressing NOD mice before or after Treg ablation by DTR. Also, NK cells cultured in vitro with activating cytokines IL12 and IL-18 with or without regulatory TGFb.
  • organism-icon Mus musculus
  • sample-icon 41 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Following Treg ablation in the BDC/NOD.Foxp3-DTR strain, NK cells produce IFNg and accumulate to higher percentage and number. We explored the signature pathways responsible for this phenomenon using microarray prolifing and comparison to other activation signatures.

Publication Title

Regulatory T cells control NK cells in an insulitic lesion by depriving them of IL-2.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE78066
Global gene expression changes during immune complex-induced neutrophil activation (wild type and Card9/ cells)
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

--- Raw data of the Supplementary Table 1 of the Nature Communications article 'Neutrophil-specific deletion of the CARD9 gene expression regulator suppresses autoantibody-induced inflammation in vivo'

Publication Title

Neutrophil-specific deletion of the CARD9 gene expression regulator suppresses autoantibody-induced inflammation in vivo.

Sample Metadata Fields

Treatment, Time

View Samples
accession-icon GSE37383
Ulipristal and Progesterone Receptor
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Ulipristal blocks ovulation by inhibiting progesterone receptor-dependent pathways intrinsic to the ovary.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE37353
Gene expression profiling of ovaries collected from mice treated with or without Ulipristal
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Ulipristal acetate (UPA), also referred to as VA/CDB-2914, is a new and promising emergency contraceptive. It is a selective progesterone receptor modulator (SPRM) that has been approved in Europe and the USA for emergency contraception.

Publication Title

Ulipristal blocks ovulation by inhibiting progesterone receptor-dependent pathways intrinsic to the ovary.

Sample Metadata Fields

Specimen part, Treatment

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact