refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 24 results
Sort by

Filters

Technology

Platform

accession-icon SRP091767
Human embryonic stem cells do not change their X-inactivation status during differentiation [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Female human ESC-lines can carry active X-chromosomes (Xa) or an XIST-RNA-coated inactive X-chromosome (XiXIST+). Additionally, many ESC lines have abnormal X-chromosomeinactivation (XCI)-states where the Xi no longer expresses XIST-RNA and has transcriptionally active regions (eroded Xi=Xe). The fate of each XCI-state upon differentiation is unclear because individual lines often contain a mixture of XCI-states. Here, we established homogeneous XiXa, XeXa, and XaXa ESC-lines. Employing RNA-FISH, RNA-sequencing and DNA methylation analyses, we found that these lines were unable to initiate XIST-expression and X-chromosome-wide silencing upon differentiation indicating that the ESC XCI-state is maintained in differentiated cells. Consequently, differentiated XeXa and XaXa cells displayed higher levels of X-linked gene-expression than XiXa cells. Although global transcriptional compensation between X-chromosomes and autosomes is not required for female ESC-differentiation, the degree of X-chromosome-silencing influences differentiation efficiencies. Our data suggest that the XiXIST+Xa state is inherent to human ESCs and that all other XCI-states, including XaXa, are abnormal and arise during ESC-derivation or maintenance. Overall design: RNA-seq was used to measure the expression state of X-linked and autosomal genes in undifferentiated human embryonic stem cells with different X-chromosome states and their differentiated cells.

Publication Title

Human Embryonic Stem Cells Do Not Change Their X Inactivation Status during Differentiation.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE8837
Transcriptional regulation by the novel Rho GTPase RhoBTB2.
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

RhoBTB2 is a novel Rho GTPase that undergoes loss, underexpression and mutation in breast and lung cancer. We have shown that we can mimic loss of RhoBTB2 through siRNA treatment of primary cells. We propose to perform comparative microarray analysis of primary lung cells to establish the identification of the gene targets of RhoBTb2 regulation.

Publication Title

The atypical Rho GTPase RhoBTB2 is required for expression of the chemokine CXCL14 in normal and cancerous epithelial cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15074
Expression data from Rat heterotopic cardiac transplants
  • organism-icon Rattus norvegicus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Heterotopic cardiac transplants were constructed in male Wistar Furth (allograft donor) and ACI (host) rats. Rats were divided into three groups consisting of no treatment, treatment with a sub-therapeutic dose of cyclosporin A, and treated with combination of a sub-therapeutic dose of cyclosporin A and allochimeric peptide. The allografts were harvested at defined periods post-transplantation and RNA was harvested to monitor gene expression changes resulting from the various treatments in T-cells and in heart cells.

Publication Title

Intragraft gene expression profile associated with the induction of tolerance by allochimeric MHC I in the rat heart transplantation model.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE3726
Prognostic gene signatures can be measured with samples stored in RNAlater
  • organism-icon Homo sapiens
  • sample-icon 104 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

A number of breast or colon specific genes predictive of the relapse status were used in comparing the outcome from matched fresh frozen and stored in RNAlater preservative.

Publication Title

Prognostic gene expression signatures can be measured in tissues collected in RNAlater preservative.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE137634
Lymphocyte DNA methylation mediates genetic risk at shared immune mediated disease loci
  • organism-icon Homo sapiens
  • sample-icon 209 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Lymphocyte DNA methylation mediates genetic risk at shared immune-mediated disease loci.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon GSE142049
Transcriptional data of inflamatory arthritis B cells
  • organism-icon Homo sapiens
  • sample-icon 109 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

With a focus on rheumatoid arthritis (RA), we sought new insight into genetic mechanisms of adaptive immune dysregulation to help prioritise molecular pathways for targeting in this and related immune pathologies. Whole genome methylation and transcriptional data from isolated CD4+ T cells and B cells of >100 genotyped and phenotyped inflammatory arthritis patients, all of whom were naïve to immunomodulatory treatments, were obtained. Analysis integrated these comprehensive data with GWAS findings across IMDs and other publically available resources.

Publication Title

Lymphocyte DNA methylation mediates genetic risk at shared immune-mediated disease loci.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon GSE141934
Transcriptional data of inflamatory arthritis T cells.
  • organism-icon Homo sapiens
  • sample-icon 100 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

With a focus on rheumatoid arthritis (RA), we sought new insight into genetic mechanisms of adaptive immune dysregulation to help prioritise molecular pathways for targeting in this and related immune pathologies. Whole genome methylation and transcriptional data from isolated CD4+ T cells and B cells of >100 genotyped and phenotyped inflammatory arthritis patients, all of whom were naïve to immunomodulatory treatments, were obtained. Analysis integrated these comprehensive data with GWAS findings across IMDs and other publically available resources.

Publication Title

Lymphocyte DNA methylation mediates genetic risk at shared immune-mediated disease loci.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon GSE100648
Early arthritis B cell gene expression profiling
  • organism-icon Homo sapiens
  • sample-icon 242 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

242 patients recruited from an early arthritis clinic donated RNA and DNA from freshly isolated and purified peripheral blood CD19+ B cells. Global gene expression measurement was carried out using Illumina BeadChip HT12v4 microarrays. Objectives included the identification of B cell transcripts differentially expressed between disease phenotypes, where all patients were naive to immunomodulatory therapy. In addition an eQTL analysis was carried out with reference to known genotype data for this cohort of patients

Publication Title

CD4+ and B Lymphocyte Expression Quantitative Traits at Rheumatoid Arthritis Risk Loci in Patients With Untreated Early Arthritis: Implications for Causal Gene Identification.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE74713
Isolation of highly enriched cardiac mesoderm from differentiating human embryonic stem cells
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

CD13 and ROR2 Permit Isolation of Highly Enriched Cardiac Mesoderm from Differentiating Human Embryonic Stem Cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP065774
CD13 and ROR2 permit isolation of highly enriched cardiac mesoderm from differentiating human embryonic stem cells
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

The resultant heat map demonstrates the maturation of CD13+/ROR2+ cells as they proceed through cardiac differentiation. Overall design: RNA-seq analysis was preformed on RNA samples from undifferentiated hESCs, 13R2+ and 13R2- populations from day 3, 13R2+/NKX2-5+ and 13R2+/NKX2-5- from day 7, and 13R2+/NKX2-5+/a-MHC+ and 13R2+/NKX2-5+/MHC- from day 14

Publication Title

CD13 and ROR2 Permit Isolation of Highly Enriched Cardiac Mesoderm from Differentiating Human Embryonic Stem Cells.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact