refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 590 results
Sort by

Filters

Technology

Platform

accession-icon GSE13547
Zfx controls BCR-induced proliferation and survival of B lymphocytes
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The development, homeostasis and function of B lymphocytes involve multiple rounds of B cell receptor (BCR)-controlled proliferation and prolonged maintenance. We analyzed the role of transcription factor Zfx, a recently identified regulator of stem cell maintenance, in B cell development and homeostasis. Conditional Zfx deletion in the bone marrow blocked B cell development at the pre-BCR selection checkpoint. Zfx deficiency in peripheral B cells caused impaired generation of the B-1 cell lineage, accelerated B cell turnover, depletion of mature recirculating cells, and delayed T-dependent antibody responses. Zfx-deficient B cells showed normal proximal BCR signaling, but impaired BCR-induced proliferation and survival. This was accompanied by aberrantly enhanced and prolonged integrated stress response, and delayed induction of Cyclin D2 and Bcl-xL proteins. Thus, Zfx restrains the stress response and couples antigen receptor signaling to B cell expansion and maintenance during development and peripheral homeostasis.

Publication Title

Transcription factor Zfx controls BCR-induced proliferation and survival of B lymphocytes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE43022
ZFX controls the propagation and cell-of-origin characteristics of acute leukemia
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

ZFX controls propagation and prevents differentiation of acute T-lymphoblastic and myeloid leukemia.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE36921
Effect of genetic Zfx deletion on gene expression in c-Kit + MLL-AF9 AML cells
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Acute myeloid leukemia (AML) propagates as a cellular hierarchy which is maintained by a rare subpopulation of self-renewing leukemia-initiating cells (LICs). These LICs phenotypically resemble HSCs and early myeloid progenitors, and they are functionally defined by their ability to reconstitute AML in xenografted mice.

Publication Title

ZFX controls propagation and prevents differentiation of acute T-lymphoblastic and myeloid leukemia.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE43020
Effect of genetic Zfx deletion on gene expression in Notch induced T-ALL
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Acute myeloid leukemia (AML) and acute T-lymphoblastic leukemia (T-ALL) maintain the undifferentiated phenotype and proliferative capacity of their respective cells of origin, hematopoietic stem/progenitor cells and immature thymocytes. The mechanisms that maintain these progenitor-like characteristics are poorly understood. We report that the transcription factor Zfx is required for the development and propagation of experimental AML caused by MLL-AF9 fusion, and of T-ALL caused by Notch1 activation. In both leukemia types, Zfx activated progenitor-associated gene expression programs and prevented differentiation. Key Zfx target genes included mitochondrial enzymes Ptpmt1 and Idh2, whose overexpression partially rescued the propagation of Zfx-deficient AML. These studies identify a common mechanism that controls the cell-of-origin characteristics of acute leukemias derived from disparate lineages and transformation mechanisms.

Publication Title

ZFX controls propagation and prevents differentiation of acute T-lymphoblastic and myeloid leukemia.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE11408
Expression Data From HCMV-Infected Human Monocytes Study 2
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

Human cytomegalovirus induces a pro-inflammatory monocyte following infection. To begin to address how HCMV induces these rapid changes in infected monocytes, we examined the transcriptome of infected monocytes. Global transcriptional profiling using cDNA microarrays revealed a significant number of pro-inflammatory genes were upregulated within 4 hours post infection.

Publication Title

Transcriptome analysis reveals human cytomegalovirus reprograms monocyte differentiation toward an M1 macrophage.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP124960
Timeseries of small RNA and mRNA expression during zebrafish heart regeneration
  • organism-icon Danio rerio
  • sample-icon 168 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Adult zebrafish are capable of regenerating cardiac tissue following ventricular resection within 30 days. We profiled both small RNA and mRNA expression in uninjured (0dpa), 1, 3, 7, 14, 21 and 30 days post amputation to study biological processes orchestrate each stage of regeneration. Overall design: Small and mRNA gene expression profiling during 0, 1, 3, 7, 14, 21 and 30 days post ventricular resection.

Publication Title

RegenDbase: a comparative database of noncoding RNA regulation of tissue regeneration circuits across multiple taxa.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE61341
Functional genomic analysis reveals overlapping and distinct features of chronologically long-lived yeast populations
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The chronological lifespan (CLS) of Saccharomyces cerevisiae is defined as the number days that non-dividing cells remain viable, typically in stationary phase cultures or in water. CLS is extended by restricting glucose in the starting cultures, and is considered a form of caloric restriction (CR). Through a previous genetic screen our lab determined that deleting components of the de novo purine biosynthesis pathway also significantly increased CLS. Significant similarities in gene expression profiles between calorie restricted WT cells and a non-restricted ade4 mutant suggested the possibility of common gene expression biomarkers of all chronologically long lived cells that could also provide insights into general mechanisms of lifespan extension. We have identified additional growth conditions that extend CLS of WT cells, including supplementation of the media with isonicotinamide (INAM), a known sirtuin activator, or by supplementation with a concentrate collected from the expired media of a calorie restricted yeast culture, presumably due to an as yet unidentified longevity factor. Using these varied methods to extend CLS, we compared gene expression profiles in the aging cells (at day 8) to identify functionally relevant biomarkers of longevity. Nineteen genes were differentially regulated in all 4 of the long-lived populations relative to wild type. Of these 19 genes, viable haploid deletion mutants were available for 16 of them, and 12 were found to have a significant impact on CLS.

Publication Title

Functional genomic analysis reveals overlapping and distinct features of chronologically long-lived yeast populations.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP072245
Hypothalamic transcriptome of male mice on high fat diet, from 99 strains
  • organism-icon Mus musculus
  • sample-icon 282 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Previous studies had shown that integration of genome wide expression profiles, in metabolic tissues, with genetic and phenotypic variance, provided valuable insight into the underlying molecular mechanisms. We used RNA-Seq to characterize hypothalamic transcriptome in 99 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP), a reference resource population for cardiovascular and metabolic traits. We report numerous novel transcripts supported by proteomic analyses, as well as novel non coding RNAs. High resolution genetic mapping of transcript levels in HMDP, reveals both local and trans expression Quantitative Trait Loci (eQTLs) demonstrating 2 trans eQTL "hotspots" associated with expression of hundreds of genes. We also report thousands of alternative splicing events regulated by genetic variants. Finally, comparison with about 150 metabolic and cardiovascular traits revealed many highly significant associations. Our data provides a rich resource for understanding the many physiologic functions mediated by the hypothalamus and their genetic regulation. Overall design: 282 samples, 3 biological replicates per strain

Publication Title

Hypothalamic transcriptomes of 99 mouse strains reveal trans eQTL hotspots, splicing QTLs and novel non-coding genes.

Sample Metadata Fields

Sex, Cell line, Subject

View Samples
accession-icon SRP139787
NOTCH-mediated non-cell autonomous regulation of chromatin structure during senescence [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 48 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We decribe the accessible chormatin landscape in RAS-induced (RIS) and NOTCH induced senescence (NIS) using ATAC-seq. By expressing active NOTCH (N1ICD) in the context of RIS, we find that N1ICD antagonises the formation of accessible regions in RIS. By performing co-cultures, we demonstrate that cells expressing a NOTCH1 ligand, JAGGED1, can antagonise the formation of RIS specific accessible regions. Overall design: mRNA profiles were IMR90 cells expressing ER:HRAS(G12V) and a control vector or MSCV miR30 shHMGA1 were generated. 6 biological replicates.

Publication Title

NOTCH-mediated non-cell autonomous regulation of chromatin structure during senescence.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP094587
Characterization of meningeal type 2 innate lymphocytes and their response to CNS injury
  • organism-icon Mus musculus
  • sample-icon 53 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The meningeal space is occupied by a diverse repertoire of innate and adaptive immune cells. CNS injury elicits a rapid immune response that affects neuronal survival and recovery, but the role of meningeal inflammation in CNS injury remains poorly understood. Here we describe group 2 innate lymphoid cells (ILC2s) as a novel cell type resident in the healthy meninges that is activated following CNS injury. ILC2s are present throughout the naïve mouse meninges, though are concentrated around the dural sinuses, and have a unique transcriptional profile relative to lung ILC2s. After spinal cord injury, meningeal ILC2s are activated in an IL-33 dependent manner, producing type 2 cytokines. Using RNAseq, we characterized the gene programs that underlie the ILC2 activation state. Finally, addition of wild type lung-derived ILC2s into the meningeal space of IL-33R-/- animals improves recovery following spinal cord injury. These data characterize ILC2s as a novel meningeal cell type that responds to and functionally affects outcome after spinal cord injury, and could lead to new therapeutic insights for CNS injury or other neuroinflammatory conditions. Overall design: ILC2s were isolated from 10 week C57/Bl6 mice with and without spinal cord injury (1 day post injury). 5 mice were pooled per group, with meninges dissected, digested, and FACs sorted (CD45+/DAPI-/Lin–/St2+/Thy1+) directly into RNA lysis buffer.

Publication Title

Characterization of meningeal type 2 innate lymphocytes and their response to CNS injury.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact