refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 50 results
Sort by

Filters

Technology

Platform

accession-icon GSE16683
Human endothelial gene expression under estradiol treatment
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

DNA microarrays were used to investigate global gene expression patterns in cultured human umbilical vein endothelial cells (HUVEC) exposed to 1 nmol/L estradiol for 24 hours, compared to control cells.

Publication Title

Estradiol stimulates vasodilatory and metabolic pathways in cultured human endothelial cells.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE49037
WRKY6 Transcription Factor Restricts Arsenate Uptake and Transposon Activation in Arabidopsis
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Stress constantly challenges plant adaptation to the environment. Of all stress types, arsenic was a major threat during the early evolution of plants. The most prevalent chemical form of arsenic is arsenate, whose similarity to phosphate renders it easily incorporated into cells via the phosphate transporters. Here we found that arsenate stress provokes a notable transposon burst in plants, in coordination with arsenate/phosphate transporter repression, which immediately restricts arsenate uptake. This repression was accompanied by delocalization of the phosphate transporter from the plasma membrane. When arsenate was removed, the system rapidly restored transcriptional expression and membrane localization of the transporter. We identify WRKY6 as an arsenate-responsive transcription factor that mediates arsenate/phosphate transporter gene expression and restricts arsenate-induced transposon activation. Plants therefore have a dual WRKY-dependent signaling mechanism that modulates arsenate uptake and transposon expression, providing a coordinated strategy for arsenate tolerance and transposon gene silencing.

Publication Title

WRKY6 transcription factor restricts arsenate uptake and transposon activation in Arabidopsis.

Sample Metadata Fields

Time

View Samples
accession-icon SRP041313
Mismatch between mtDNA and nuclear DNA determines metabolism and healthy aging
  • organism-icon Mus musculus
  • sample-icon 29 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

We postulate here that the two singular characteristics of the mitochondrial oxidative phosphorylation system—the integration of three potentially antagonistic functions in the same structure and the double genetic origin of the components that assemble together in these molecular machines—make the evolution of an optimal system impossible. As a consequence the system is intrinsically mismatched and has to be continuously monitored, Adjusted and regulated in order to achieve the necessary and variable performance. Systematic transcriptomic, Metabolomic and biochemical evaluation of animals with identical nuclear DNA but different mtDNA haplotype strongly support the existence of intrinsic mismatch and reveals profound lifelong metabolic consequences on reactive oxygen species generation, Insulin signaling, Tendency towards obesity, And healthy ageing parameters, Including telomere atresia Overall design: Transcriptome analysis of conplastic mice versus WT mice in Liver and Heart tissues Conplastic strains were obtained after 10 generations of backcrossing to create a new line harboring the nuclear genome of one strain and the mtDNA of another (C57BL/6 and NZB were purchased from Harlan Laboratories).

Publication Title

Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP081599
DNA methylation in lung cells is a key modulator of asthma endotypes and genetic risk [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 85 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We generated genome-wide RNASeq data from freshly isolated airway epithelial cells of asthmatics and non-asthmatics. This data was paired with genome-wide genetic and methylation data from the same individuals allowing for an integrated analysis of genetic, transcriptional, and epigenetic signatures in asthma. Overall design: examination of genome-wide genome-wide gene expression levels and comparison to phenotypes

Publication Title

DNA methylation in lung cells is associated with asthma endotypes and genetic risk.

Sample Metadata Fields

Specimen part, Disease, Subject

View Samples
accession-icon GSE108033
Maternal gene expression data from dMLL3/4-depleted Drosophila embryos
  • organism-icon Drosophila melanogaster
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Drosophila Gene 1.1 ST Array (drogene11st)

Description

Analysis of Drosophila melanogaster early embryos (pre-zygotic genome activation) following the germ line-specific depletion of the dMLL3/4 histone methyltransferase (also known as Trr). These results provide insight into the molecular mechanisms responsible for the assembly of the zygotic genome at fertilization.

Publication Title

The Trithorax group protein dMLL3/4 instructs the assembly of the zygotic genome at fertilization.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE21013
Effect of dietary abscisic acid (ABA) supplementation on spleen transcriptome in LPS-challenged mice
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

BACKGROUND: Dietary ABA-supplementation modulates immune and inflammatory responses in mouse models of chronic and infectious disease. However, the underlying mechanisms by which ABA elicits its immune modulatory effects are not well understood. This project used a systems approach in combination with functional and in vivo studies to investigate the target gene pathways modulated by ABA in the context of an inflammatory LPS challenge.

Publication Title

Abscisic acid regulates inflammation via ligand-binding domain-independent activation of peroxisome proliferator-activated receptor gamma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12254
Gene expression associated with liver metabolism during viral hemorrhagic fever
  • organism-icon Macaca mulatta
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Rhesus macaques (Macaca mulatta) infected with a lethal dose of lymphocytic choriomeningitis virus-strain WE (LCMV-WE) provide a model for Lassa fever virus infection of man. Like Lassa fever in human beings, disease begins with flu-like symptoms but can progress to morbidity fairly rapidly. Previously, we profiled the blood transcriptome of LCMV-infected monkeys (M. Djavani et al. J. Virol. 2007: PMID 17522210) showing distinct pre-viremic and viremic stages that discriminated between virulent and benign infections. In the present study, changes in liver gene expression from macaques infected with virulent LCMV-WE were compared to gene expression in uninfected monkeys as well as to monkeys that were infected but not diseased. We observed gene expression changes that occurred before the viremic stage of the disease, and could potentially serve as biomarkers that discriminate between exposure to a hemorrhagic fever virus and exposure to a benign virus. Based on a functional pathway analysis of differentially expressed genes, virulent LCMV-WE had a much broader effect on liver cell function than non-virulent virus. During the first few days of infection, virulent virus impacted gene expression associated with the generation of energy, such as fatty acid metabolism and glucose metabolism, with the complement and coagulation cascades, and with steroid metabolism, MAPK signaling and cell adhesion. For example, the energy profile resembled that of an organism entering starvation: acetyl-CoA carboxylase, a key enzyme of fatty acid synthesis, was shut down and gene products involved in gluconeogenesis were up-regulated. In conclusion, this study identifies several potential gene markers of LCMV-WE-associated liver disease and contributes to the database of gene expression changes correlated with LCMV pathogenesis in primates.

Publication Title

Gene expression in primate liver during viral hemorrhagic fever.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE5202
Expression data from B. melitensis infected mouse macrophages
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Facultative intracellular Brucella infect and survive inside macrophages, and the outcome of macrophage-Brucella interaction is a basis for establishment of a chronic Brucella infection. The majority of Brucella are killed at the early infection stage. A subpopulation of virulent Brucella strains is instead trafficked to an intracellular replicative phagosome, and are resistant to further attack and begin to multiply dramatically. Virulent Brucella also inhibit macrophage apoptosis that in turn favors pathogen survival and replication.

Publication Title

Brucella melitensis triggers time-dependent modulation of apoptosis and down-regulation of mitochondrion-associated gene expression in mouse macrophages.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9918
temporal profiling of retinal transcriptome regulation after IONT and IONC
  • organism-icon Rattus norvegicus
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

retinal ganglion cells die after optic nerve injury, either crush or transection. The molecular causesunderlying this degeneration are largely unkwon

Publication Title

Time course profiling of the retinal transcriptome after optic nerve transection and optic nerve crush.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP018815
RNA helicase A is necessary for KIF1Bß tumor suppression in neuroblastoma
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

During development neuronal progenitors compete for growth factors such as nerve growth factor NGF and require the prolyl hydroxylase EglN3 and the kinesin KIF1Bß for developmental apoptosis. Inherited KIF1Bß loss-of-function mutations in neuroblastomas and pheochromocytomas implicate KIF1Bß as a 1p36.2 tumor suppressor, however the mechanism of tumor suppression is unknown. We found that KIF1Bß interacts with the RNA helicase A (DHX9) resulting in DHX9 nuclear accumulation to regulate apoptosis. KIF1Bß-dependent DHX9 nuclear localization leads to transcription of the apoptotic target XIAP-associated factor 1. DHX9 is induced when NGF is limiting and required for apoptosis in cells deprived of NGF. Overall design: NB1 cells were transduced to incorporate shRNA against DHX9 or a scrambled control, and transfected with a KIF1Bß expression vector or control, then transfected cells were isolated and lysed after 48h.

Publication Title

RNA helicase A is a downstream mediator of KIF1Bβ tumor-suppressor function in neuroblastoma.

Sample Metadata Fields

Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact