refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 544 results
Sort by

Filters

Technology

Platform

accession-icon GSE19314
Sarcoidosis-specific markers from whole blood gene expression
  • organism-icon Homo sapiens
  • sample-icon 63 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We hypothesized that microarray analyses of whole blood gene expression would identify patterns of gene expression useful in the diagnosis for sacroidosis and identify inflammatory mediators relevant to the underlying pathophysiology.

Publication Title

Sarcoidosis blood transcriptome reflects lung inflammation and overlaps with tuberculosis.

Sample Metadata Fields

Sex, Disease, Race

View Samples
accession-icon GSE57118
Heterogeneous stock rats that differ in glucose tolerance
  • organism-icon Rattus norvegicus
  • sample-icon 58 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification of a novel gene for diabetic traits in rats, mice, and humans.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE54935
Gene expression profiles in heterogeneous stock rats that differ in glucose tolerance
  • organism-icon Rattus norvegicus
  • sample-icon 58 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Using heterogeneous stock (HS) rats, we have identified a region on rat chromosome 1 that maps multiple diabetic traits. We sought to use global expression analysis to determine if genes within this region are differentially expressed between HS rats with normal glucose tolerance and those with glucose intolerance

Publication Title

Identification of a novel gene for diabetic traits in rats, mice, and humans.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE43458
Gene expression profiling of lung adenocarcinomas and normal lung tissue
  • organism-icon Homo sapiens
  • sample-icon 108 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Lung cancer is still the leading cause of cancer-related deaths in the US and worldwide. Understanding the global molecular profiles or transcriptome of lung cancers would strengthen our understanding of the biology of this malignancy.

Publication Title

ETS2 mediated tumor suppressive function and MET oncogene inhibition in human non-small cell lung cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE43459
Gene expression profiling of lung cancer cells transfected with scrambled siRNA and siRNA targeting the ETS2 gene
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

ETS2 is a canonical transcriptional factor and member of the ETS family of genes. ETS2 binds to consensus ERE binding sites in a broad spectrum of genes thus affecting many intracellular molecular functions. However, the role of ETS2 in the biology and pathogenesis of lung cancers is still not known.

Publication Title

ETS2 mediated tumor suppressive function and MET oncogene inhibition in human non-small cell lung cancer.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE20344
Expression data from the basolateral amygdala of Long-Evans rats with a history of limited intermittent sucrose snacks
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

To study the molecular mediators of naturally rewarding effects of palatable food we used a model of palatable snacking (Ulrich-Lai et al., 2007) in which rats are given chronic, brief access to a limited amount of sucrose solution (30%). Single housed, male Long-Evans rats (250g) (n=12 per group) from Harlan Labs (Indianapolis, IN) received normal rat chow (Harlan Teklad) and water ad libitum for the duration of the experiment. After a one-week period of acclimation, rats were randomly assigned to drink treatment groups of either 30% sucrose solution or water. Rats received a 14-day regimen of twice daily (9:30 and 15:30) brief (maximum of 30 minutes) limited (up to 4 mL) access of their assigned drink solution. Drink solutions were delivered via a graduated sipper placed onto the cage top in addition to the existing water bottle and sippers were immediately removed when the animal had consumed 4mL or after the 30-minute access period, whichever occurred first. Drink intake, food intake, and body weight were monitored throughout the experiment to verify that the rats learned to drink sucrose, that they adjusted chow intake for calories consumed from sucrose (~10%), and that there was no effect on body weight gain as is normally seen with this model (Ulrich-Lai et al., 2007). Drink treatment terminated on day 14 and at 8:00 on the morning of day 15, the rats were sacrificed by rapid decapitation. BLA tissue was dissected, RNA extracted, and gene expression changes between water and sucrose groups were accessed by microarray.

Publication Title

Pleasurable behaviors reduce stress via brain reward pathways.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon SRP173383
Combined MEKi (GDC-0973) and WNT (G007-LK) treatment in APC and KRAS mutant HCT-15 cell line
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We report RNAseq data from HCT-15 cells were treated wih control(DMSO), GDC-0973, G007-LK and combined GDC-0973 and G007-LK treatmetn for 24 hours. Overall design: Three biological replicates of cultured HCT-15 cells treated with DMSO (0.02%), G007-LK (1µM), GDC-0973 (1µM) or G007-LK and GDC-0973 for 24 hours before Rna extraction

Publication Title

MEK Inhibition Induces Canonical WNT Signaling through YAP in <i>KRAS</i> Mutated HCT-15 Cells, and a Cancer Preventive FOXO3/FOXM1 Ratio in Combination with TNKS Inhibition.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE58386
Slug-dependent upregulation of L1CAM is responsible for the increased invasion potential of pancreatic cancer cells following long-term 5-FU-treatment
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

In pancreatic cancer the survival rate is low, as the available treatment options usually only extend survival and seldom produce a cure. Drug resistance and disease reoccurrence is the typical reason for death after cancer diagnosis. 5-Fluorouracil (5-FU) is the main chemostatic used in first line therapy. However the majority of the tumors become resistant to treatment. To investigate acquired 5-FU resistance in pancreatic adenocarcinoma, we established chemoresistant monoclonal cell lines from the Panc03.27 cell line by long-term exposure to 5-FU. In addition to increased expression of markers associated with multidrug resistance, the 5-FU resistant clones showed alterations typical of the process of epithelial-to-mesenchymal transition (EMT), including upregulation of mesenchymal markers and increased invasiveness. Microarray analysis revealed the L1CAM pathway as one of the most upregulated pathways in the chemoresistant clones, which was confirmed on RNA and protein levels. Expression of the adhesion molecule L1CAM is associated with a chemoresistant and migratory phenotype of pancreatic cancer. Using esiRNA targeting L1CAM, or by blocking the extracellular part of L1CAM with monoclonal antibodies, we discovered that the increased invasiveness observed in the chemoresistant cells depends on L1CAM. Using esiRNA targeting -catenin and/or Slug, we discovered that L1CAM expression depends on Slug rather than -catenin in the 5-FU resistant cells. We demonstrate a functional link between Slug and the expression level of L1CAM in pancreatic cancer cells having undergone EMT following long-term exposure to 5-FU. Our findings provide further insight into the molecular mechanisms leading to a chemoresistant and migratory phenotype in pancreatic cancer cells and indicate the importance of Slug-induced L1CAM in refractory pancreatic cancer.

Publication Title

Slug-dependent upregulation of L1CAM is responsible for the increased invasion potential of pancreatic cancer cells following long-term 5-FU treatment.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE62092
Gene Expression of Kidney from HSRA-S (congenital solitary kidney) and HSRA-C (two-kidney) using Rat Gene 1.1 ST Array [RaGene-1_1-st]
  • organism-icon Rattus norvegicus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.1 ST Array (ragene11st)

Description

We recently developed a new model of renal agenesis [i.e., the heterogeneous stock derived model of unilateral renal agenesis, (HSRA)]. The HSRA model consistently exhibits unilateral renal agenesis ranging from 50-75% in each generation and is characterized by low nephron number, early kidney hypertrophy, and an inherent susceptibility to develop significant kidney injury and decline in renal function with age.

Publication Title

Nephron Deficiency and Predisposition to Renal Injury in a Novel One-Kidney Genetic Model.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE4870
Expression data from T65H translocation mice
  • organism-icon Mus musculus
  • sample-icon 45 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Tissue-specific comparison of gene expression levels in T65H translocation mice, either with or without uniparental duplications of Chrs 7 & 11. Identification of highly differentially expressed transcripts.

Publication Title

Chromosome-wide identification of novel imprinted genes using microarrays and uniparental disomies.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact