refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 73 results
Sort by

Filters

Technology

Platform

accession-icon GSE6465
Expression data of Hepatocellular Carcinoma
  • organism-icon Homo sapiens
  • sample-icon 49 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Expression profiling of Xenografts of Hepatocellular Carcinoma

Publication Title

Bevacizumab and rapamycin induce growth suppression in mouse models of hepatocellular carcinoma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE57671
Human XCR1+ Dendritic Cells Derived In Vitro from CD34+ Progenitors Closely Resemble Blood Dendritic Cells, Including Their Adjuvant Responsiveness, Contrary to Monocyte-Derived Dendritic Cells
  • organism-icon Homo sapiens
  • sample-icon 74 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Functional characterization of human dendritic cell subsets is limited due to the very low frequency of these cells in vivo. We developed an in vitro culture system for the simultaneous generation of XCR1+ DCs and MoDCs from cord blood CD34+ cells. Their global gene expression profiles at steady state and under activation, phenotypes, morphologies and responses to different TLR ligands where characterized and compared with those of their in vivo counterparts. The study demonstrated that the XCR1+ DCs generated in vitro from cord blood CD34+ cells are equivalent to blood XCR1+ DCs and also allowed a rigorous comparison of this DC subset with MoDC which are often considered as the reference model for DCs. Altogether, our results showed that in vitro generated XCR1+ DCs are a better model for the study of blood DC than the conventionally used MoDCs.

Publication Title

Human XCR1+ dendritic cells derived in vitro from CD34+ progenitors closely resemble blood dendritic cells, including their adjuvant responsiveness, contrary to monocyte-derived dendritic cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon E-MEXP-849
Transcription profiling of Arabidopsis seed and flowers of ga1-3 mutant
  • organism-icon Arabidopsis thaliana
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Gibberellin mobilizes distinct DELLA-dependent transcriptomes to regulate seed germination and floral development in Arabidopsis

Publication Title

Gibberellin mobilizes distinct DELLA-dependent transcriptomes to regulate seed germination and floral development in Arabidopsis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP063567
Complementarity and redundancy of IL-22-producing innate lymphoid cells
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Homeostasis of the gut microbiota is pivotal to the survival of the host. Intestinal T cells and Innate Lymphoid cells (ILCs) control the composition of the microbiota and respond to its perturbations. Interleukin 22 (IL-22) plays a pivotal role in the immune control of gut commensal and pathogenic bacteria and is secreted by a heterogeneous population of intestinal T cells, NCR- ILC3 and NCR+ILC3. Expression of NCR by ILC3 is believed to define an irreversible effector ILC3 end-state fate in which these cells are key to control of bacterial infection via their production of IL-22. Here we identify the core transcriptional signature that drives the differentiation of NCR- ILC3 into NCR+ ILC3 and reveal that NCR+ILC3 exhibit more plasticity than originally thought, as NCR+ ILC3 can revert to NCR- ILC3. Contrary to the prevailing understanding of NCR+ ILC3 genesis and function, in vivo analyses of mice conditionally deleted of the key ILC3 genes Stat3, Il22, Tbet and Mcl1 demonstrated that NCR+ ILC3 were not essential for the control of colonic infections in the presence of T cells. However, NCR+ ILC3 were mandatory for homeostasis of the caecum. Our data identify that the interplay of intestinal T cells and ILC3 results in robust complementary fail-safe mechanisms that ensure gut homeostasis. Overall design: Transcriptional profiling of wild-type and T-bet knockout innate lymphoid cells (ILC3) using RNA sequencing

Publication Title

Complementarity and redundancy of IL-22-producing innate lymphoid cells.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE73594
Effects of Kielin/Chordin-like Protein (KCP) in Mouse Liver
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

Liver RNA was collected from three genotypes: WT controls, KCP knockout (KCP-KO) mutants, and KCP-Transgenic (KCP-Tg) overexpressing mice.

Publication Title

The kielin/chordin-like protein KCP attenuates nonalcoholic fatty liver disease in mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE27685
Expression data of embryonic stem (ES) cells from both control and Prmt6 overexpressed population
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

ES cells are able to self-renew and remain pluripotent. These characteristics are maintained by both genetic and epigenetic regulators. Protein arginine methyltransferase (PRMT) 4 and 5 are shown to be important in early embryonic development and in ES cells. PRMT6-mediated di-methylation of histone H3 at arginine 2 (H3R2me2) can antagonize the tri-methylation of histone H3 at lysine 4, which marks active genes. However, it is unclear whether PRMT6 and PRMT6-mediated H3R2me2 play crucial roles in early embryonic development and ES cell identity. In this study, we investigate their functions using mouse ES cells as the model.

Publication Title

Protein arginine methyltransferase 6 regulates embryonic stem cell identity.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE37662
CEACAM6 is a PDEF induced gene in breast cancer
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Identifying PDEF regulated genes may shed light on the mechanism by which PDEF may induce breast cancer progression. To that purpose, we have used the MCF-7 human breast tumor cell line model to identify PDEF induced genes. Briefly, PDEF expression was down regulated by shRNA in MCF-7 cells and RNA probes from PDEF-down regulated and control MCF-7 cells were used to screen the Affymetrics HG-U133A Gene Chips. This analysis found 62 genes that were induced 2-fold or higher by PDEF. Further analysis of 3 of these genes namely S100A7, CEACAM6 and B7-H4 in primary breast tumors showed CEACAM6 as a frequently elevated and co-exressed gene with PDEF in these tumors.

Publication Title

Prostate derived Ets transcription factor and Carcinoembryonic antigen related cell adhesion molecule 6 constitute a highly active oncogenic axis in breast cancer.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE6954
Identification of AGL24 downstream genes by using XVE inducible system
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

To understand the transcriptional program controlled by AGL24, we took advantage of a functional estradiol-inducible AGL24 expression system in combination with microarray analysis to identify AGL24 target genes.

Publication Title

Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE71730
Plasma induced signatures reveal an extracellular milieu possessing an immunoregulatory bias in treatment nave inflammatory bowel disease
  • organism-icon Homo sapiens
  • sample-icon 42 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The complex milieu of inflammatory mediators associated with many diseases is often too dilute to directly measure in the periphery, necessitating development of more sensitive measurements suitable for mechanistic studies, earlier diagnosis, guiding selection of therapy, and monitoring interventions. Previously, we determined that plasma of recent-onset (RO) Type 1 diabetes (T1D) patients induce a proinflammatory transcriptional signature in fresh peripheral blood mononuclear cells (PBMC) relative to that of unrelated healthy controls (HC). Here, using an optimized cryopreserved PBMC-based protocol, we apply this approach to inflammatory bowel disease by examining groups of Crohn's disease (CD) and ulcerative colitus (UC) patients. The induced plasma induced signatures are compared to those of Type 1 diabetes patients (RO T1D) as well as unrelated healthy controls (uHC).

Publication Title

Plasma-induced signatures reveal an extracellular milieu possessing an immunoregulatory bias in treatment-naive paediatric inflammatory bowel disease.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE40586
Peripheral blood RNA gene expression profiling in patients with bacterial meningitis
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The aim of present study was to describe the genetic pathways activated during the community acquired bacterial meningitis (BM) by using genome-wide RNA expression profiling combined with functional annotation of transcriptional changes. We included 21 patients with BM hospitalized in 2008. The control group consisted of 18 healthy subjects. The RNA was extracted from whole blood, globin mRNA was depleted and gene expression profiling was performed with GeneChip Human Gene 1.0 ST Arrays enabling the analysis of 28,869 genes. Gene expression profile data were analyzed using Bioconductor packages and Bayesian modeling. Functional annotation of the enriched gene sets was used to define changed genetic networks. We also analyzed if the gene expression profile depends on the clinical course and outcome. In order to verify the genechip results, we chose ten functionally relevant genes with high statistical significance (CD177, IL1R2, IL18R1, IL18RAP, OLFM4, TLR5, CPA3, FCER1A, IL5RA, IL7R) and performed quantitative real-time (qRT) PCR.We identified the significant differences at p values of <0.05 in 8569 genes and after False Discovery Rate (FDR) correction, total of 5500 genes remained significant at p value of <0.01. Quantitative RT-PCR confirmed differential expression for selected genes. Functional annotation and network analysis indicated that most of the genes were related to activation of humoral and cellular immune responses (enrichment score 43). Those changes were found in adults and in children with BM compared to the healthy controls. Gene expression profile didnt depend on the clinical outcome, but there was very strong influence by the type of the pathogen. This study demonstrates a strong functional genomic evidence of the over-active immune response during bacterial meningitis. This hyperactive response possibly explains the complicated clinical course of this disease.

Publication Title

Peripheral blood RNA gene expression profiling in patients with bacterial meningitis.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact