refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 117 results
Sort by

Filters

Technology

Platform

accession-icon SRP073318
mRNA expression of breast cancer cell lines across different densities [SCRB-Seq]
  • organism-icon Homo sapiens
  • sample-icon 87 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

mRNA expression profiles for 3 breast cancer cell lines seeded at different density and grown for different duration Overall design: This experiment is part of a study fo the effect of cell density on drug sensitivity [1]. Cells plated at different densities in 384-well plates were harvested at the indicated times and RNA was extracted using the RNeasy mini kit (Qiagen). To ensure sufficient RNA amounts wells with low cell numbers were pooled. Some conditions have been tested in biollogical replicates grown at the same time. Libraries were prepared by the Broad Technology Labs (BTL) following the protocol for SCRB-Seq described in [2]. Transcripts were quantified by the BTL computational pipeline using Cuffquant version 2.2.1 [3]. [1] Hafner, M., Niepel, M., Chung, M., Sorger, P.K., Growth rate inhibition metrics correct for confounders in measuring sensitivity to cancer drugs. DOI:10.1038/NMETH.3853 [2] Soumillon, M., Cacchiarelli, D., Semrau, S., van Oudenaarden, A. & Mikkelsen, T.S. Characterization of directed differentiation by high-throughput single-cell RNA-Seq http://biorxiv.org/content/early/2014/03/05/003236 [3] Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D.R., Pimentel, H., Salzberg, S.L., Rinn, J.L. & Pachter, L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks, Nat. Protoc. 7, 562-578 (2012).

Publication Title

Growth rate inhibition metrics correct for confounders in measuring sensitivity to cancer drugs.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE30516
Dynamic re-wiring of apoptotic signaling networks enhances tumor cell killing by DNA damage
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Crosstalk and complexity within signaling pathways has limited our ability to devise rational strategies for using network biology to treat human disease. This is particularly problematic in cancer where oncogenes that drive or maintain the tumorigenic state alter the normal flow of molecular information within signaling networks that control growth, survival and death. Understanding the architecture of oncogenic signaling pathways, and how these networks are re-wired by ligands or drugs, could provide opportunities for the specific targeting of oncogene-driven tumors. Here we use a systems biology-based approach to explore synergistic therapeutic strategies to optimize the killing of triple negative breast cancer cells, an incompletely understood tumor type with a poor treatment outcome. Using targeted inhibition of oncogenic signaling pathways combined with DNA damaging chemotherapy, we report the surprising finding that time-staggered EGFR inhibition, but not simultaneous co-administration, can dramatically sensitize the apoptotic response of a subset of triple-negative cells to conventional DNA damaging agents. A systematic analysis of the order and timing of inhibitor/genotoxin presentationusing a combination of high-density time-dependent activity measurements of signaling networks, gene expression profiles, cell phenotypic responses, and mathematical modelingrevealed an approach for altering the intrinsic oncogenic state of the cell through dynamic re-wiring of oncogenic signaling pathways. This process converts these cells to a less tumorigenic state that is more susceptible to DNA damage-induced cell death, through re-activation of an extrinsic apoptotic pathway whose function is suppressed in the oncogene-addicted state.

Publication Title

Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE53951
Gene expression after type-I interferon treatment in primary neurons, primary fibroblasts and L929 cells
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Microarray expression profilling of mouse primary mixed cortical/hippocampal neurons, primary fibroblasts and L929 cells to compare ISGs signature in disctinct cell types

Publication Title

Inefficient type I interferon-mediated antiviral protection of primary mouse neurons is associated with the lack of apolipoprotein l9 expression.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE11967
Identifying alternative hyper-splicing signatures in MG-thymoma by exon arrays
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Background: The vast majority of human genes (.70%) are alternatively spliced. Although alternative pre-mRNA processing is modified in multiple tumors, alternative hyper-splicing signatures specific to particular tumor types are still lacking. Here, we report the use of Affymetrix Human Exon Arrays to spot hyper-splicing events characteristic of myasthenia gravis (MG)-thymoma, thymic tumors which develop in patients with MG and discriminate them from colon cancer changes. Methodology/Principal Findings: We combined GO term to parent threshold-based and threshold-independent ad-hoc functional statistics with in-depth analysis of key modified transcripts to highlight various exon-specific changes. These denote alternative splicing in MG-thymoma tumors compared to healthy human thymus and to in-house and Affymetrix datasets from colon cancer and healthy tissues. By using both global and specific, term-to-parent Gene Ontology (GO) statistical comparisons, our functional integrative ad-hoc method allowed the detection of disease-relevant splicing events. Conclusions/Significance: Hyper-spliced transcripts spanned several categories, including the tumorogenic ERBB4 tyrosine kinase receptor and the connective tissue growth factor CTGF, as well as the immune function-related histocompatability gene HLA-DRB1 and interleukin (IL)19, two muscle-specific collagens and one myosin heavy chain gene; intriguingly, a putative new exon was discovered in the MG-involved acetylcholinesterase ACHE gene. Corresponding changes in spliceosome composition were indicated by co-decreases in the splicing factors ASF/SF2 and SC35. Parallel tumor-associated changes occurred in colon cancer as well, but the majority of the apparent hyper-splicing events were particular to MGthymoma and could be validated by Fluorescent In-Situ Hybridization (FISH), Reverse TranscriptionPolymerase Chain Reaction (RT-PCR) and mass spectrometry (MS) followed by peptide sequencing. Our findings demonstrate a particular alternative hyper-splicing signature for transcripts over-expressed in MG-thymoma, supporting the hypothesis that alternative hyper-splicing contributes to shaping the biological functions of these and other specialized tumors and opening new venues for the development of diagnosis and treatment approaches

Publication Title

Identifying alternative hyper-splicing signatures in MG-thymoma by exon arrays.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE148414
Eye-antenna early L3 disc expression profiling in combinations of COX7a-LoF, ATF4-LoF and Notch-GoF
  • organism-icon Drosophila melanogaster
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Gene expression in larval, early third instar eye-antenna discs was assessed to reveal an ATF4 contribution to target gene induction following COX7a knockdown. As hypothesised, these COX7a-RNAi induced target genes require the transcription factor ATF4 for induction, irrespective of concomitant Notch pathway activation through Delta over-expression.

Publication Title

ATF4-Induced Warburg Metabolism Drives Over-Proliferation in Drosophila.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE148407
Eye-antenna early L3 disc expression profiling in COX7a-LoF and Notch-GoF
  • organism-icon Drosophila melanogaster
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Gene expression in larval, early third instar eye-antenna discs was assesed in genotypes with Notch Gain-of-Function (UAS-Delta or UAS-Notch[intra2]) over-expression or mitochondrial COX7a Loss-of-function (UAS-COX7a-RNAi) or a combination of both (UAS-Delta, UAS-COX7a-RNAi). The analysis revealed that, despite a strong genetic interaction between Notch pathway activation and knockdown of COX7a, no transcriptional cooperation or synergy was detectable in early L3 eye-antenna discs. Rather, COX7a knockdown induced a unique transcriptional signature, which further experiments revealed to be mediated by the transcription factor ATF4.

Publication Title

ATF4-Induced Warburg Metabolism Drives Over-Proliferation in Drosophila.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE25595
The small RNA PhrS stimulates synthesis of the Pseudomonas aeruginosa quinolone signal
  • organism-icon Pseudomonas aeruginosa
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Description

Quorum sensing, a cell-to-cell communication system based on small signal molecules, is employed by the human pathogen Pseudomonas aeruginosa to regulate virulence and biofilm development. Moreover, regulation by small trans-encoded RNAs has become a focal issue in virulence gene expression of bacterial pathogens. In this study, we have identified the small RNA PhrS as an activator of PqsR synthesis, one of the key quorum sensing regulators in P. aeruginosa. Genetic studies revealed a novel mode of regulation by a sRNA, whereby PhrS uses a base-pairing mechanism to activate a short upstream open reading frame to which the pqsR gene is translationally coupled. Expression of phrS is induced by the oxygen-responsive regulator ANR when the oxygen supply decreases. Thus, PhrS is the first bacterial sRNA that provides a regulatory link between oxygen availability and quorum sensing, which may impact on oxygen-limited growth in P. aeruginosa biofilms.

Publication Title

The small RNA PhrS stimulates synthesis of the Pseudomonas aeruginosa quinolone signal.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP148659
Total RNA profiles in response to four tyrosine kinase inhibitors in human induced pluripotent stem cell-derived cardiomyocytes
  • organism-icon Homo sapiens
  • sample-icon 671 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

To define molecular markers of tyrosine kinase inhibitor-induced cardiotoxicity, we measured transcriptome changes in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) treated with one of four tyrosine kinase inhibitors (Erlotinib, Lapatinib, Sorafenib, or Sunitinib) displaying a range of mild to severe cardiotoxicity or a vehicle-only control (DMSO). Gene expression changes were assessed at the cell population level using total RNA-seq, which measured levels of both mRNAs and non-coding RNAs. hiPSC-CMs used in this study were the Cor.4U cells purchased from Ncardia. Overall design: hiPSC-CMs were treated with each TKI (Erlotinib, Lapatinib, Sorafenib or Sunitinib) at three doses (1, 3 and 10 µM) for 24 hours and the intermediate dose (3 µM) for an additional three time points (6h, 72h and 168h). hiPSC-CMs were also treated with the DMSO vehicle-only control at four time points (6h, 24h, 72h and 168h). Each treatment condition had three biological replicates, collected from three independent experiments using three different lots of hiPSC-CMs. Total RNA was collected from all these samples.

Publication Title

Adaptation of Human iPSC-Derived Cardiomyocytes to Tyrosine Kinase Inhibitors Reduces Acute Cardiotoxicity via Metabolic Reprogramming.

Sample Metadata Fields

Sex, Specimen part, Subject, Compound, Time

View Samples
accession-icon GSE31458
Expression data from nave and MPTP-exposed cholinergic transgenic mice
  • organism-icon Mus musculus
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

PD is the second most common neurodegenerative disease worldwide with growing prevalence. MPTP is a neurotoxin which causes the appearance of Parkinson's disease (PD) pathology. The involvement of the cholinergic system in PD has been identified decades ago and anti-cholinergic drugs were upon the first drugs used for symptomatic treatment of PD. Of note, MPTP intoxication is a model of choice for symptomatic neuroprotective therapies since it have been quite predictive. Mice were exposed to the dopaminergic neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP), with or without the protective acetylcholinesterase (AChE-R) variant. Transgenic AChE-S (the synaptic variant), AChE-R (the shorter, protective variant) and FVB/N control mice were included in this study. Two brain regions were examined: the pre-frontal cortex (PFC) and the striatal caudate-putamen (CPu). Each condition (i.e brain region and transgenic variant) was examined on both naive and MPTP-exposed mice.

Publication Title

Meta-analysis of genetic and environmental Parkinson's disease models reveals a common role of mitochondrial protection pathways.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE23676
Expression data from advanced Parkinson's disease (PD) patients leukocytes - prior to and following deep brain stimulation (DBS) treatment in on and off stimulation conditions, and matched healthy control (HC) subjects
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

Sub-thalamic deep brain stimulation (DBS) reversibly modulates Parkinsons disease (PD) motor symptoms, providing an unusual opportunity to compare leukocyte transcripts in the same subjects before and after neurosurgery and after disconnecting the stimulus (ON-and OFF-stimulus). Here, we report rapid stimulus-induced and largely reversible changes in PD leukocyte transcripts, which were larger in scope than the disease-induced changes. These transcript changes classified advanced pre- from post-surgery PD patients and discriminated patients from controls. Moreover, the extent of changes correlated with the neurological efficacy of the DBS neurosurgery, and covered both regulatory pathways and individual transcript changes, e.g. SNCA, PARK7 and the splicing factor SFRS1. Following 1 hour OFF-stimulus, these changes were largely reversed. We extracted from these differences a modified transcripts signature which discriminated controls from advanced PD patients, pre- from post-surgery and ON-from OFF-stimulus conditions. A further gene-list independent analysis detected reversed pathways. Our findings suggest future uses of this approach and the discovered molecular signature for early diagnostics of PD and for identifying novel targets for therapeutic intervention in this and other DBS-treatable neurological diseases.

Publication Title

Deep brain stimulation induces rapidly reversible transcript changes in Parkinson's leucocytes.

Sample Metadata Fields

Sex, Specimen part, Disease stage

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact