refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 97 results
Sort by

Filters

Technology

Platform

accession-icon GSE58501
MiRNAs 182 and 183 are necessary to maintain adult cone photoreceptor outer segments and visual function
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

miRNAs 182 and 183 are necessary to maintain adult cone photoreceptor outer segments and visual function.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE58493
Expression data of wild type and C-DGCR8 KO cones at different timepoints [array]
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We have analyzed gene expression in cone photoreceptors isolated from wild type and C-DGCR8 (DiGeorge Syndrome Critical Region Gene 8) KO mice at five different time points to get a mechanistic inside into the altered molecular pathways after microRNAs depletion.

Publication Title

miRNAs 182 and 183 are necessary to maintain adult cone photoreceptor outer segments and visual function.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE28005
Charaterization of the initial molecular events of adipose tissue development and growth during overfeeding in humans
  • organism-icon Homo sapiens
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The adaptive mechanisms in response to excess energy supply are still poorly known in humans. Our aims were to define metabolic responses and changes in gene expression in adipose tissue of healthy volunteers during fat overfeeding.

Publication Title

Subcutaneous adipose tissue remodeling during the initial phase of weight gain induced by overfeeding in humans.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon GSE10748
Expression data from brain tissue of Rattus norvegicus treated with D-Serine
  • organism-icon Rattus norvegicus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

d-serine is naturally present throughout the human body. It is also used as add-on therapy for treatment-refractory schizophrenia. d-Serine interacts with the strychnine-insensitive glycine binding site of NMDA receptor, and this interaction could lead to potentially toxic activity (i.e., excitotoxicity) in brain tissue. The transcriptomic changes that occur in the brain after d-serine exposure have not been fully explored.

Publication Title

D-Serine exposure resulted in gene expression changes implicated in neurodegenerative disorders and neuronal dysfunction in male Fischer 344 rats.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE15770
WT and Get1 +/- Bladder Time Course
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Skin and bladder epithelia form effective permeability barriers through the activation of distinct differentiation gene programs. Employing a genome-wide gene expression study, we identified transcription regulators whose expression correlates highly with that of differentiation markers both in bladder and skin, including the Grainyhead factor Get1/Grhl3, already known to be important for epidermal barrier formation. In the bladder, Get1 is most highly expressed in the differentiated umbrella cells and its mutation in mice leads to a defective bladder epithelial barrier formation due to failure of apical membrane specialization. Genes encoding components of the specialized urothelial membrane, the uroplakins, were downregulated in Get1-/- mice. At least one of these genes, Uroplakin II, is a direct target of Get1. The urothelial-specific activation of the Uroplakin II gene is due to selective binding of Get1 to the Uroplakin II promoter in urothelial cells, most likely regulated by histone modifications. These results demonstrate a key role for Get1 in urothelial differentiation and barrier formation.

Publication Title

The epidermal differentiation-associated Grainyhead gene Get1/Grhl3 also regulates urothelial differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE15772
WT Dorsal Skin Time Course
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Skin and bladder epithelia form effective permeability barriers through the activation of distinct differentiation gene programs. Employing a genome-wide gene expression study, we identified transcription regulators whose expression correlates highly with that of differentiation markers both in bladder and skin, including the Grainyhead factor Get1/Grhl3, already known to be important for epidermal barrier formation. In the bladder, Get1 is most highly expressed in the differentiated umbrella cells and its mutation in mice leads to a defective bladder epithelial barrier formation due to failure of apical membrane specialization. Genes encoding components of the specialized urothelial membrane, the uroplakins, were downregulated in Get1-/- mice. At least one of these genes, Uroplakin II, is a direct target of Get1. The urothelial-specific activation of the Uroplakin II gene is due to selective binding of Get1 to the Uroplakin II promoter in urothelial cells, most likely regulated by histone modifications. These results demonstrate a key role for Get1 in urothelial differentiation and barrier formation.

Publication Title

The epidermal differentiation-associated Grainyhead gene Get1/Grhl3 also regulates urothelial differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE22443
Expression data for nave IL-2 and IL-12 primed Pmel-1 CD8+ T-cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The expansion, trafficking and functional effectiveness of adoptively transferred CD8+ T-cells play a critical role in mediating effective anti-tumor immunity. However, the mechanisms which program the highly proliferative and functional state of CD8+ T-cells are not completely understood. We hypothesized that IL-12, a cytokine commonly induced by TLR activation, could enhance T-cell priming by altering responsiveness to antigen and cytokines. Priming of tumor specific CD8+ T-cells in the presence of IL-12 induced the acquisition of a 'polyfunctional' effector response and increased the generation of memory cells. Moreover, IL-12 priming also promoted high levels of the IL-2 receptor alpha-chain (CD25) and robust IL-2 mediated activation of STAT5. This sensitivity to IL-2 translated into enhanced in vivo proliferation of adoptively transferred CD8+ T-cells. Furthermore, real-time, in vivo imaging of T-cell trafficking confirmed the ability of IL-12 priming to drive in vivo proliferation. IL-12 priming enhanced the anti-tumor function of adoptively transferred cells by reducing established subcutaneous tumor burden, and significantly increasing survival in an established intracranial tumor model. Finally, IL-12 priming of human PBMCs generates tumor specific T-cells phenotypically and functionally similar to IL-12 primed Pmel-1 T-cells. These results highlight IL-12 as an important mediator of CD8+ T-cell effector function and anti-tumor immunity.

Publication Title

Enhanced sensitivity to IL-2 signaling regulates the clinical responsiveness of IL-12-primed CD8(+) T cells in a melanoma model.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE19713
Expression data of 3 prostate cancer stem cell primary lines comparing spheres and parental/adherent culture
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Transcriptional profile of PCSC spheres in SCM-1% KO (stem-like cells) vs adherent cultures in PCSC-Celprogen medium (differentiated-like cells)

Publication Title

Genomic profiling of tumor initiating prostatospheres.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE51883
Effect of Mirn378 overexpression on gene expression during C2C12 myogenic and BMP2-induced osteogenic differentiation
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Background: MicroRNAs (miRNAs) are a family of small, non-coding single-stranded RNA molecules involved in post-transcriptional regulation of gene expression. As such, they are believed to play a role in regulating the step-wise changes in gene expression patterns that occur during cell fate specification of multipotent stem cells. Here, we have studied whether terminal differentiation of C2C12 myoblasts is indeed controlled by lineage-specific changes in miRNA expression.

Publication Title

MicroRNA miR-378 promotes BMP2-induced osteogenic differentiation of mesenchymal progenitor cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE93338
Feasibility of Developing Reliable Gene Expression Modules from FFPE Derived RNA Profiled on Affymetrix Arrays
  • organism-icon Homo sapiens
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Feasibility of developing reliable gene expression modules from FFPE derived RNA profiled on Affymetrix arrays.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact