refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 35 results
Sort by

Filters

Technology

Platform

accession-icon GSE46203
Transcriptional effects of CTGF inhibition and gemcitabine in the KPC mouse model of pancreatic ductal adenocarcinoma
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Pancreatic ductal adenocarcinoma (PDA) is characterized by abundant desmoplasia and poor tissue perfusion. These features are proposed to limit access of therapies to neoplastic cells and blunt treatment efficacy. Indeed, several agents that target the PDA microenvironment promote chemotherapy delivery and improve anti-neoplastic responses in murine models of PDA. Here, we employed the FG-3019 monoclonal antibody directed against the pleiotropic matricellular signaling molecule connective tissue growth factor (CTGF/CCN2). FG-3019 treatment increased PDA cell killing and led to a dramatic tumor response without altering gemcitabine delivery. Microarray expression profiling revealed the down-regulation by FG-3019 of several anti-apoptotic transcripts, including the master regulator Xiap, down-regulation of which has been shown to sensitize PDA to gemcitabine. Decreases in XIAP protein by FG-3019 in the presence and absence of gemcitabine were confirmed by immunoblot, while increases in XIAP protein were seen in PDA cell lines treated with recombinant CTGF. Therefore, alterations in survival cues following targeting of tumor microenvironmental factors may play an important role in treatment responses in animal models and, by extension, PDA patients.

Publication Title

CTGF antagonism with mAb FG-3019 enhances chemotherapy response without increasing drug delivery in murine ductal pancreas cancer.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE51108
Gene expression in liver tissue from Ghrh-KO and normal (wild-type) mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The hypothalamus has recently emerged as a key regulator of metabolism and aging in mammals. We have examined the impact of targeted disruption of hypothalamic hypophysiotropic peptide: Growth Hormone-releasing Hormone (GHRH) in mice on longevity, and the putative mechanisms of delayed aging. GHRH knockout (KO) mice are remarkably long-lived and in comparison to genetically normal (wild type) animals exhibiting major shifts in the expression of genes related to xenobiotic detoxification, stress resistance, and insulin signaling. These mutant mice also have increased adiponectin levels and alterations in glucose homeostasis consistent with the removal of the counter-insulin effects of GH. While these effects overlap with those of caloric restriction (CR), we show that effects of CR and the GHRH mutation are additive, with lifespan of GHRH-KO mutants further increased by CR. We conclude that GHRH-KO mice feature perturbations in a network of signaling pathways related to stress resistance, metabolic control and inflammation, and therefore provide a new model that can be used to explore links between GHRH repression, downregulation of the somatotropic axis, and extended longevity.

Publication Title

Growth hormone-releasing hormone disruption extends lifespan and regulates response to caloric restriction in mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP063973
TSLP acts on neutrophils to drive complement-mediated killing of methicillin-resistant Staphylococcus aureus
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Staphylococcus aureus can cause serious skin, respiratory, and other life-threatening invasive infections in humans, and methicillin-resistant S. aureus (MRSA) strains have been acquiring increasing antibiotic resistance. While MRSA was once mainly considered a hospital-acquired infection, the emergence of new strains, some of which are pandemic, has resulted in community-acquired MRSA infections that often present as serious skin infections in otherwise healthy individuals. Accordingly, defining the mechanisms that govern the activation and regulation of the immune response to MRSA is clinically important and could lead to the discovery of much needed rational targets for therapeutic intervention. Because the cytokine thymic stromal lymphopoetin (TSLP) is highly expressed by keratinocytes of the skin3, we investigated its role in host-defense against MRSA. Here we demonstrate that TSLP acts on neutrophils to increase their killing of MRSA. In particular, we show that both mouse and human neutrophils express functional TSLP receptors. Strikingly, TSLP enhances mouse neutrophil killing of MRSA in both an in vitro whole blood killing assay and an in vivo skin infection model. Similarly, TSLP acts directly on purified human blood neutrophils to reduce MRSA burden. Unexpectedly, we demonstrate that TSLP mediates these effects both in vivo and in vitro by engaging the complement C5 system. Thus, TSLP increases MRSA killing in a neutrophil- and complement-dependent manner, revealing a key connection between TSLP and the innate complement system, with potentially important therapeutic implications for control of MRSA infection. Overall design: mRNA expression analysis. 16 samples are from 2 donors, 8 samples per donor, 2 time points (4hr and 16 hr), and 4 conditions (control, TSLP treated, Heat Killed MRSA treated, and TSLP+HKM treated) .

Publication Title

A TSLP-complement axis mediates neutrophil killing of methicillin-resistant <i>Staphylococcus aureus</i>.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE25332
Restoring miR-200c to aggressive endometrial cancer cell line
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Using a mimic miR-200c was restored to an aggressive, Type 2 endometrial cancer cell line, Hec50

Publication Title

MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE65623
Comparative gene expression analysis of Nrf2 activators, CDDO-Im, CDDO-Me and dimethyl fumarate (DMF) in VC1 lung cancer cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Nrf2 is an important therapeutic target as activation of this pathway detoxifies harmful insults and reduces oxidative stress. However, the role of Nrf2 in cancer biology is controversial. Protection against oxidative stress and inflammation can confer a survival advantage to tumor cells, leading to a poor prognosis, and constitutive activation of Nrf2 has been detected in numerous tumors. In our study, we examined the role of two clinically relevant classes of Nrf2 activators, the synthetic triterpenoids (CDDO-Im and CDDO-Me) and dimethyl fumarate (DMF) in lung cancer.

Publication Title

Dimethyl fumarate and the oleanane triterpenoids, CDDO-imidazolide and CDDO-methyl ester, both activate the Nrf2 pathway but have opposite effects in the A/J model of lung carcinogenesis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE58541
Interaction between bone marrow mesenchymal stromal cell and neuroblastoma cells leads to a VEGFA-mediated increase in osteoblastogenesis
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

To identify signature genes associated with increased osteoblastic phenotype in response to co-culture of mesenchymal and neuroblastoma cells

Publication Title

Interaction between bone marrow stromal cells and neuroblastoma cells leads to a VEGFA-mediated osteoblastogenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11287
Keap1-dependent gene expression determined in the liver using conditional Keap1 knockout mice vs. genetic control mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To compare hepatic gene expression in conditional Keap1 knockout (Alb-Cre:Keap1(flox/-)) and genetic control mice. Disruption of Keap1-mediated repression of Nrf2 signaling was expected to result in increased expression of Nrf2-regulated genes.

Publication Title

Genetic or pharmacologic amplification of nrf2 signaling inhibits acute inflammatory liver injury in mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE24206
Validated Gene Expression Signatures of Idiopathic Pulmonary Fibrosis
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Idiopathic pulmonary fibrosis (IPF) is a chronic fibrosing lung disease that is difficult to diagnose and follows an unpredictable clinical course. The object of this study was to develop a predictive gene signature model of IPF from whole lung tissue. We collected whole lung samples from 11 IPF patients undergoing diagnostic surgical biopsy or transplantation. Whenever possible, samples were obtained from different lobes. Normals consisted of healthy organs donated for transplantation. We measured gene expression on microarrays. Data were analyzed by hierarchical clustering and Principal Component Analysis. By this approach, we found that gene expression was similar in the upper and lower lobes of individuals with IPF. We also found that biopsied and explanted specimens contained different patterns of gene expression; therefore, we analyzed biopsies and explants separately. Signatures were derived by fitting top genes to a Bayesian probit regression model. We developed a 153-gene signature that discriminates IPF biopsies from normal. We also developed a 70-gene signature that discriminates IPF explants from normal. Both signatures were validated on an independent cohort. The IPF Biopsy signature correctly diagnosed 76% of the validation cases (p < 0.01), while IPF Explant correctly diagnosed 78% (p < 0.001). Examination of differentially expressed genes revealed partial overlap between IPF Biopsy and IPF Explant and almost no overlap with previously reported IPF gene lists. However, several overlapping genes may provide a basis for developing therapeutic targets.

Publication Title

Bayesian probit regression model for the diagnosis of pulmonary fibrosis: proof-of-principle.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE45728
Expression data from low R:FR - SA crosstalk in Arabidopsis
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Low R:FR signaling through phytochromes induces shade avoidance responses, including petiole elongation. Salicylic acid-mediated defense against pathogens is inhibited under these conditions.

Publication Title

Perception of low red:far-red ratio compromises both salicylic acid- and jasmonic acid-dependent pathogen defences in Arabidopsis.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon SRP074463
Gene expression analysis to identify Runx1 target genes in GMP, MEP and Gene expression signature of Runx1?/? lin- sca- kit+ CD105- CD16/32+ CD150+ (XMP) progenitors
  • organism-icon Mus musculus
  • sample-icon 40 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We report the application of single-molecule-based sequencing technology for high-throughput profiling of histone modifications in mammalian cells. By obtaining over four billion bases of sequence from chromatin immunoprecipitated DNA, we generated genome-wide chromatin-state maps of mouse embryonic stem cells, neural progenitor cells and embryonic fibroblasts. We find that lysine 4 and lysine 27 trimethylation effectively discriminates genes that are expressed, poised for expression, or stably repressed, and therefore reflect cell state and lineage potential. Lysine 36 trimethylation marks primary coding and non-coding transcripts, facilitating gene annotation. Trimethylation of lysine 9 and lysine 20 is detected at satellite, telomeric and active long-terminal repeats, and can spread into proximal unique sequences. Lysine 4 and lysine 9 trimethylation marks imprinting control regions. Finally, we show that chromatin state can be read in an allele-specific manner by using single nucleotide polymorphisms. This study provides a framework for the application of comprehensive chromatin profiling towards characterization of diverse mammalian cell populations. Overall design: GMP and MEP were isolated from Runx1+/+-Tg(vav-Cre) and Runx1fl/fl-Tg(vav-Cre) mice as well as Runx1fl/fl-Tg(vav-Cre) XMP, total RNA extracted and sequenced

Publication Title

Runx1 downregulates stem cell and megakaryocytic transcription programs that support niche interactions.

Sample Metadata Fields

Specimen part, Subject

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact