refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 175 results
Sort by

Filters

Technology

Platform

accession-icon GSE89506
Blocking promiscuous activation at cryptic promoters directs cell typespecific gene expression
  • organism-icon Drosophila melanogaster
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Blocking promiscuous activation at cryptic promoters directs cell type-specific gene expression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE68696
Gene expression of fly testes with dMi-2, kumgang (CG5204) knock downs
  • organism-icon Drosophila melanogaster
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

The effect of different loss of functions; kumgang (kmg or CG5204), dMi-2, and kmg and always early (aly) double on the gene expression in spermatocyte differentation was assessed by microarray.

Publication Title

Blocking promiscuous activation at cryptic promoters directs cell type-specific gene expression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE81248
Gene expression data from HEY cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The innate immune system is vital to rapidly responding to pathogens and Toll-like receptors (TLRs) are a critical component of this response. Nanovesicular exosomes play a role in immunity, but to date their exact contribution to the dissemination of the TLR response is unknown. To understand the effect of exosomal cargo released from locally stimulated cells on distal cell expression, we collected exosomes from local ovarian adenocarcinoma (HEY) cells that were either unstimulated (control-exosomes), stimulated with pIC (pIC-exosomes), or lipopolysaccharide (LPS-exosomes) for 48 hours. The three groups of exosomes were added to nave (distal) cells and the gene expression profiles were compared between local TLR stimulation (for 6 hours) and distal stimulation mediated by exosomes at the 48-hour time point

Publication Title

TLR-exosomes exhibit distinct kinetics and effector function.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE51039
Expression data from 8-10 week old WT mice maintained in room air or exposed to hyperoxia (FiO2>95%) for 48 hrs
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

To detect sex-specific differences in gene expression in a model of hyperoxic lung injury in adult C56BL/6J mice.

Publication Title

Analysis of the transcriptome in hyperoxic lung injury and sex-specific alterations in gene expression.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE103615
Genome-wide profiling of genes during differentiation of wild type (WT) murine embryonic stem cells (ESCs), scrambled control (SCR) ESCs and Mageb16-depleted (KD) ESCs
  • organism-icon Mus musculus
  • sample-icon 54 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The Melanoma-associated Antigen gene family (MAGE) generally encodes for tumour antigens. We recently have identified one of the MAGE gene members, Mageb16 to be highly expressed in undifferentiated murine embryonic stem cells (mESCs). The role of Mageb16 for the differentiation of the pluripotent stem cells is completely unknown. Here we demonstrate that Mageb16 (41 kDa) is distributed in cytosol and/or in surface membrane in undifferentiated mESCs. A transcriptome study was performed with differentiated short hairpin RNA (shRNA)-mediated Mageb16 knockdown (KD ESCs) and scrambled control (SCR) ESCs until a period of 22 days. Mageb16 KD ESCs mainly differentiated towards mesodermal derivatives such as cardiovascular lineages. Mesoderm-oriented differentiation initiated biological processes such as adipogenesis, osteogenesis, limb morphogenesis and spermatogenesis were significantly enriched in the differentiated Mageb16 KD ESCs. Cardiomyogenesis in differentiated KD mESCs was stronger when compared to differentiated SCR and wild mESCs. The expression of non-coding RNA (ncRNA) Lin28a and other epigenetic regulatory genes, nucleocytoplasmic trafficking and genes participating in spermatogenesis have also declined faster in the differentiating Mageb16 KD ESCs. We conclude that Mageb16 plays a crucial role for differentiation of ESCs, specifically to the mesodermal lineages. Regulative epigenetic networks and nucleocytoplasmic modifications induced by Mageb16 may play a role for the critical role of Mageb16 for the ESCs differentiation.

Publication Title

Depletion of Mageb16 induces differentiation of pluripotent stem cells predominantly into mesodermal derivatives.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE139027
Transcriptomics analysis of cells transfected with miR-183 cluster mimics and immunostimulated with poly(I:C)
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Our work demonstrated that miR-183 cluster regulates IFN production and signaling

Publication Title

A conserved miRNA-183 cluster regulates the innate antiviral response.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE14869
Analysis of the Heat Shock Response in Mouse Liver Reveals Transcriptional Dependence on the Nuclear Receptor PPAR
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

The nuclear receptor peroxisome proliferator-activated receptor alpha (PPAR) regulates responses to chemical or physical stress in part by altering expression of genes involved in proteome maintenance. Many of these genes are also transcriptionally regulated by heat shock (HS) through activation by HS factor-1 (HSF1). We hypothesized that there are interactions on a genetic level between PPAR and the HS response mediated by HSF1. Wild-type and PPAR-null mice were exposed to HS, the PPAR agonist WY-14,643 (WY), or both; gene and protein expression was examined in the livers of the mice 4 or 24 hrs after HS. Gene expression profiling identified a number of Hsp family members that were altered similarly in both mouse strains. However, most of the targets of HS did not overlap between strains. A subset of genes was shown by microarray and RT-PCR to be regulated by HS in a PPAR-dependent manner. HS also down-regulated a large set of mitochondrial genes specifically in PPAR-null mice that are known targets of PPARg co-activator 1 (PGC-1) family members. Pretreatment of PPAR-null mice with WY increased expression of PGC-1b and target genes and prevented the down-regulation of the mitochondrial genes by HS. A comparison of HS genes regulated in our dataset with those identified in wild-type and HSF1-null mouse embryonic fibroblasts indicated that although many HS genes are regulated independently of both PPAR and HSF1, a number require both factors for HS responsiveness. These findings demonstrate that the PPAR genotype has a dramatic effect on the transcriptional targets of HS and support an expanded role for PPAR in the regulation of proteome maintenance genes after exposure to diverse forms of environmental stress including HS.

Publication Title

Analysis of the heat shock response in mouse liver reveals transcriptional dependence on the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha).

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP070944
GRN knockout, sorted brain cells
  • organism-icon Mus musculus
  • sample-icon 29 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

1 year old mice were perfused and brains were dissociated. Cells were fixed, immunolabeled and FACS sorted. RNA was extracted from neuron, astrocyte, and microglial cell populations. Typical RIN=4-5 for neurons, 6-8 for astrocytes, and 5-7 for microglia. Typical RNA yields ~100ng for neurons, ~20ng for microglia, and ~10ng for astrocytes. cDNA was generated from up to 25 ng of total RNA using Nugen’s RNA-Seq method for low-input RNA samples, Ovation RNA-Seq System V2 (NuGEN). (Per manufacturers instructions, total RNA was neither depleted of rRNA nor polyA-selected.) 1 µg of sheared cDNA was taken into further processing, starting at end repair step, using Illumina’s TruSeq RNA Sample Preparation Kit v2 (Illumina). The "SAMID" sample characteristic is a sample identifier internal to Genentech. The ID of this project in Genentech''s ExpressionPlot database is PRJ0007717 Overall design: Astrocytes, microglia and neurons were sorted from PGRN heterozygous or knockout mice.

Publication Title

Progranulin deficiency causes impairment of autophagy and TDP-43 accumulation.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon SRP070945
RNAseq comparison of WT vs Progranulin KO brain
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

RNA was extracted from cortex of 1 year old wildtype, heterozygous or homozygous PGRN knockout mice. The "SAMPLE_ID" sample characteristic is a sample identifier internal to Genentech. The ID of this project in Genentech''s ExpressionPlot database is PRJ0007808 Overall design: RNA was extracted from cortex of 1 year old wildtype, heterozygous or homozygous PGRN knockout mice.

Publication Title

Progranulin deficiency causes impairment of autophagy and TDP-43 accumulation.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP040451
Reorganization of enhancer patterns in transition from naïve to primed pluripotency (RNA-seq)
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

Naïve and primed pluripotency is characterized by distinct signaling requirements, transcriptomes and developmental properties, but both cellular states share key transcriptional regulators, Oct4, Sox2 and Nanog. Here we demonstrate that transition between these two pluripotent states is associated with widespread Oct4 relocalization, mirrored by global rearrangement of enhancer chromatin landscapes. Our genomic and biochemical analyses identified candidate mediators of primed state-specific Oct4 binding, including Otx2 and Zic2/3. Even in the absence of other differentiation cues, premature Otx2 overexpression is sufficient to exit the naïve state, induce transcription of a large subset of primed pluripotency-associated genes and redirect Oct4 to thousands of previously inaccessible sites. However, ability of Otx2 to engage new enhancer regions is determined by its levels, cis-encoded properties of the sites and signaling environment. Our results illuminate regulatory mechanisms underlying pluripotency and suggest that capacity of transcription factors such as Otx2 and Oct4 to function as pioneers is highly context-dependent Overall design: transcription profile of ESCs and EpiLCs to analzye changes during differentiation and the effect of Otx2 loss and overexpression on the differentiation properties

Publication Title

Reorganization of enhancer patterns in transition from naive to primed pluripotency.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact