refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 15 results
Sort by

Filters

Technology

Platform

accession-icon GSE14465
Impact of anti-inflammatory agents on the gene expression profile of stimulated human neutrophils
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Adenosine, prostaglandin E2, or increased intracellular cyclic AMP concentration each elicit potent anti-inflammatory events in human neutrophils by inhibiting functions such as phagocytosis, superoxide production, adhesion and cytokine release. However, the endogenous molecular pathways mediating these actions are poorly understood. In the present study, we examined their impact on the gene expression profile of stimulated neutrophils. We have identified a set of genes that may be part of important resolution pathways that interfere with cell activation. Identification of these pathways will improve understanding of the capacity of tissues to terminate inflammatory responses and contribute to the development of therapeutic strategies based on endogenous resolution

Publication Title

Impact of anti-inflammatory agents on the gene expression profile of stimulated human neutrophils: unraveling endogenous resolution pathways.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP056802
Genome-wide mapping of TEL-AML1 targets in acute leukemia
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Around 20-25% of childhood acute lymphoblastic leukemias carry the TEL-AML1 (TA) fusion gene. It is a fusion of two central hematopoietic transcription factors, TEL (ETV6) and AML1 (RUNX1). Despite its prevalence, the exact genomic targets of TA have remained elusive. We evaluated gene loci and enhancers targeted by TA genome-wide in precursor B acute leukemia cells using global nuclear run-on sequencing (GRO-seq). Overall design: Nascent RNA expression profiles were generated with GRO-seq after TEL-AML1 expression in the Nalm6 pre-B-ALL cell line in four different time points (0, 4, 12 and 24 h). TEL-AML1-mut and luciferase induction cell lines were used as controls. Two replicates were included for all six samples.

Publication Title

Genome-wide repression of eRNA and target gene loci by the ETV6-RUNX1 fusion in acute leukemia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE104328
LRH-1/NR5A2 for the treatment of autoimmune diseases
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

LRH-1 agonism favours an immune-islet dialogue which protects against diabetes mellitus.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE104322
LRH-1/NR5A2 induces M1 to M2 macrophage phenotypic switch
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Strategy to repress autoimmunity and promote islet beta cell regeneration

Publication Title

LRH-1 agonism favours an immune-islet dialogue which protects against diabetes mellitus.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon SRP019027
Transcriptome sequencing of neonatal thymic epithelial cells.
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: In all vertebrates, the thymus is necessary and sufficient for production of classic adaptive T cells. The key components of the thymus are cortical and medullary thymic epithelial cells (cTECs and mTECs). Despite the capital role of TECs, our understanding of TEC biology is quite rudimentary. For instance, we ignore what might be the extent of divergence in the functional program of these two TECs populations. It also remains unclear why the number of TECs decreases rapidly with age, thereby leading to progressive thymic insufficiency. Methods: Systems level understanding of cell function begins with gene expression profiling, and the transcriptome is currently the only ''-ome'' that can be reliably tackled in its entirety in freshly harvested primary cells. In order to gain novel insights into TEC biology, we therefore decided to analyse the whole transcriptome of cTECs, mTECs and skin epithelial cells. We elected to analyse gene expression using RNA-seq rather microarrays because RNA-seq has higher sensitivity and dynamic range coupled to lower technical variations. Results: Our deep sequencing approach provides a unique perspective into the transcriptome of TECs. Consistent with their ability to express ectopic genes, we found that mTECs expressed more genes than other cell populations. Out of a total of 15,069 genes expressed in TECs, 25% were differentially expressed by at least 5-fold in cTECs vs. mTECs. Genes expressed at higher levels in cTECs than mTECs regulate numerous cell functions including cell differentiation, cell movement and microtubule dynamics. Almost all positive regulators of the cell cycle were overexpressed in skin ECs relative to TECs. Conclusions: Our RNA-seq data provide novel insights into the transcriptional landscape of TECs, highlight substantial divergences in the transcriptome of TEC subsets and suggest that cell cycle progression is differentially regulated in TECS and skinECs. We believe that our work will therefore represent a valuable resource and will be of great interest to readers working in biological sciences, particularly in the areas of immunology and systems biology. Overall design: The mRNA profiles of cTEC, mTEC (from 14 thymi of 7-days old C57BL/6 mice) and skinEC (from the trunk and dorsum of seven newborn mice) were generated by RNA-sequencing using Illumina HiSeq2000.

Publication Title

Transcriptome sequencing of neonatal thymic epithelial cells.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE59453
Transcriptomic changes in the duodenum mucosa after a high-fat (HF) or low-fat (LF) meal ingestion.
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Fat intake is an important determinant in the development of obesity. The small intestine is the principal site of digestion and absorption of nutrients, and these short-term circulating nutrients and hormones as well as neural signals derived from the peripheral tissues in responses to a meal act at multiple central nervous system sites where food intake is controlled.

Publication Title

Identification of the principal transcriptional regulators for low-fat and high-fat meal responsive genes in small intestine.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE75877
The PGC-1/ERR Axis Represses One-Carbon Metabolism and Promotes Sensitivity to Anti-Folate Therapy in Breast Cancer
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The PGC-1α/ERRα Axis Represses One-Carbon Metabolism and Promotes Sensitivity to Anti-folate Therapy in Breast Cancer.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE112449
Microarray analysis comparing gene expression of callus tissue extracted from either Cyp24a1-null mice or their control heterozygous littermates
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The 24R,25-dihydroxyvitamin D metabolite (24R,25D) has long been suspected of participating to bone fracture repair. We used Cyp24a1-deficient mice, unable to produce 24R25D, to observe gene expression in callus tissue compared to that of control littermates.

Publication Title

Optimal bone fracture repair requires 24R,25-dihydroxyvitamin D3 and its effector molecule FAM57B2.

Sample Metadata Fields

Age, Specimen part, Treatment, Time

View Samples
accession-icon GSE33612
Expression data from human primary fibroblasts (IMR90) stably expressing H-RasV12 and treated with Metformin or vehicle
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Metformin reduces the incidence of cancer in diabetics or in animal models. At the cellular level, the effects of metformin include the inhibition of complex I of the mitochondrial electron transport chain, a reduction in ATP levels and the activation of the energy sensor AMP kinase. Metformin also prevents the production of reactive oxygen species in primary human cells expressing oncogenic ras and the DNA damage associated to the process.

Publication Title

Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE75727
The PGC-1/ERR Axis Represses One-Carbon Metabolism and Promotes Sensitivity to Anti-Folate Therapy in Breast Cancer [Microarray expression]
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Reprogramming of cellular metabolism plays a central role in fuelling malignant transformation, and AMPK as well as the PGC-1/ERR axis are key regulators of this process. Intersection of gene expression and binding event datasets in breast cancer cells shows that activation of AMPK significantly increases the expression of PGC-1/ERR and promotes the binding of ERR to its cognate sites. Unexpectedly, the data also reveal that ERR, in concert with PGC-1, negatively regulates the expression of several one-carbon metabolism genes resulting in substantial perturbations in purine biosynthesis. This PGC-1/ERR-mediated repression of one-carbon metabolism promotes the sensitivity of breast cancer cells and tumors to the anti-folate drug methotrexate. These data implicate the PGC-1/ERR axis as a core regulatory node of folate cycle metabolism and further suggest that activators of AMPK could be used to modulate this pathway in cancer.

Publication Title

The PGC-1α/ERRα Axis Represses One-Carbon Metabolism and Promotes Sensitivity to Anti-folate Therapy in Breast Cancer.

Sample Metadata Fields

Cell line

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact