refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 864 results
Sort by

Filters

Technology

Platform

accession-icon SRP102602
Constitutive Activation of HH-GLI Signaling in the Metanephric Mesenchyme causes Ureteropelvic Junction Obstruction during Mammalian Embryogenesis
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

This study explores the underlying pathogenic mechanisms of congenital intrinsic obstruction of the ureteropelvic junction. A hedgehog-dependent mechanism underlying mammalin intrinsic ureteropelvic obstruction is defined. Overall design: Tissue was microdissected from the kidney-ureter junction at E13.5, one day after the onset of Ptc2-lacZ expression, from PTC-/-MM mice; 2 PTC2+ and 2 PTC2- cell populations were isolated using antibodies specific for PTC2 and FACS sorting.

Publication Title

Activated Hedgehog-GLI Signaling Causes Congenital Ureteropelvic Junction Obstruction.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP115384
Regulation of posterior body and ectodermal morphogenesis in zebrafish by localized Yap1 and Wwtr1
  • organism-icon Danio rerio
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The vertebrate embryo undergoes a series of dramatic morphological changes as the body extends to form the complete anterior-posterior axis during the somite-forming stages. The molecular mechanisms regulating these complex processes are still largely unknown. We show that the Hippo pathway transcriptional coactivators Yap1 and Wwtr1 are specifically localized to the ectoderm and notochord, and play a critical and unexpected role in posterior body extension by regulating the assembly of Fibronectin underneath the ectoderm and surrounding the notochord. We also find that Yap1/Wwtr1, also acting through Fibronectin, have an essential role in the ectodermal morphogenesis necessary to form the initial dorsal and ventral fins, a process that had been thought to involve bending of an epithelial sheet, but which we now show involves active cell migration. Our results reveal how the Hippo pathway transcriptional program, localized to two specific tissues, acts to control essential morphological events in the vertebrate embryo. Overall design: two biological replicates of tails of yap1/wwtr1 double homozygous mutants and siblings (24 each at 16-18 somite stage) were collected for RNAseq. Tails are tissues of the posterior end until the third newest somite (S-III).

Publication Title

Regulation of posterior body and epidermal morphogenesis in zebrafish by localized Yap1 and Wwtr1.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP068656
RNA sequencing of adult zebrafish spinal cord
  • organism-icon Danio rerio
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

The goal of this study is to determine gene expression changes in the adult zebrafish spinal cord at 2 weeks after complete transection. Overall design: 2 samples were analyzed in duplicates: sham injured spinal cord and transected spinal cord at 2 weeks post-injury

Publication Title

Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP095604
Genome-wide transcriptome profiles in Control and Schizophrenia hiPSC-dervied NPC [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We Report the genome-wide RNA expression levels in control and schizophrenia hiPSC dervied NPC treated with neuronal media for 2 days. In total about 15,000 gene expression were detected in all samples, of which 1349 were dysregualted. Overall design: Examination, identification and comparision of mRNA expression profliles in control and schizophrenia npc

Publication Title

Common developmental genome deprogramming in schizophrenia - Role of Integrative Nuclear FGFR1 Signaling (INFS).

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE1907
Sarcoidosis + Follow-up study
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95A Array (hgu95a)

Description

Sarcoidosis + Follow-up 6 month after

Publication Title

Functional genomics and prognosis in sarcoidosis--the critical role of antigen presentation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13083
Barrett's vs Normal esophagus vs small intestine comparison
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

To begin to identify genes involved in the transdifferentiation process we analyzed Barretts esophagus (with no dysplasia), normal esophagus and small intestine biopsy samples by Affymetrix microarray.

Publication Title

Cdx1 and c-Myc foster the initiation of transdifferentiation of the normal esophageal squamous epithelium toward Barrett's esophagus.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE29832
Expression data from pure/mixed blood and breast to test feasability of deconvolution of clinical samples
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Samples collected from human subjects in clinical trials possess a level of complexity, arising from multiple cell types, that can obfuscate the analysis of data derived from them. Blood, for example, contains many different cell types that are derived from a distinct lineage and carry out a different immunological purpose. Failure to identify, quantify, and incorporate sources of heterogeneity into an analysis can have widespread and detrimental effects on subsequent statistical studies.

Publication Title

Optimal deconvolution of transcriptional profiling data using quadratic programming with application to complex clinical blood samples.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE8319
A LysM Receptor-like Kinase Mediates Chitin Perception and Fungal Resistance in Arabidopsis
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

A LysM Receptor-like Kinase Mediates Chitin Perception and Fungal Resistance in Arabidopsis

Publication Title

A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12039
Regulation of endothelial gene expression by miR-126 in human and zebrafish
  • organism-icon Danio rerio, Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st), Affymetrix Zebrafish Genome Array (zebrafish)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

miR-126 regulates angiogenic signaling and vascular integrity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12012
Regulation of zebrafish endothelial gene expression by miR-126
  • organism-icon Danio rerio
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

Fish, JE, Santoro, MM, Morton, SU, Yu, S, Yeh, RF, Wythe, JD, Ivey, KI, Bruneau, BG, Stainier, DYR, and Srivastava, D. (2008). miR-126 Regulates Angiogenic Signaling and Vascular Integrity. Developmental Cell 15, 272-284.

Publication Title

miR-126 regulates angiogenic signaling and vascular integrity.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact