refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 864 results
Sort by

Filters

Technology

Platform

accession-icon SRP119119
Gene expression profiles of migrating cell types Drosophila embryogenesis
  • organism-icon Drosophila melanogaster
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Cell migration is an instrumental process that ensures cells are properly positioned to support the specification of distinct tissue types during development. To provide insight, we used fluorescence activated cell sorting (FACS) to isolate two migrating cell types from the Drosophila embryo: caudal visceral mesoderm (CVM) cells, precursors of longitudinal muscles of the gut, and hemocytes (HCs), the Drosophila equivalent of blood cells. ~350 genes were identified from each of the sorted samples using RNA-seq, and in situ hybridization was used to confirm expression within each cell type or, alternatively, within other interacting, co-sorted cell types. To start, the two gene expression profiling datasets were compared to identify cell migration regulators that are potentially generally-acting. 73 genes were present in both CVM cell and HC gene expression profiles, including the transcription factor zinc finger homeodomain-1 (zfh1). Comparisons with gene expression profiles of Drosophila border cells that migrate during oogenesis had a more limited overlap, with only the genes neyo (neo) and singed (sn) found to be expressed in border cells as well as CVM cells and HCs, respectively. Neo encodes a protein with Zona pellucida domain linked to cell polarity, while sn encodes an actin binding protein. Tissue specific RNAi expression coupled with live in vivo imaging was used to confirm cell-autonomous roles for zfh1 and neo in supporting CVM cell migration, whereas previous studies had demonstrated a role for Sn in supporting HC migration. In addition, comparisons were made to migrating cells from vertebrates. Seven genes were found expressed by chick neural crest cells, CVM cells, and HCs including extracellular matrix (ECM) proteins and proteases. In summary, we show that genes shared in common between CVM cells, HCs, and other migrating cell types can help identify regulators of cell migration. Our analyses show that neo in addition to zfh1 and sn studied previously impact cell migration. This study also suggests that modification of the extracellular milieu may be a fundamental requirement for cells that undergo cell streaming migratory behaviors. Overall design: Examination of genes expressed in two migrating cell populations (CVM and hemocytes) during their active cell migration and the rest of cell types of corresponding stages

Publication Title

Comparative analysis of gene expression profiles for several migrating cell types identifies cell migration regulators.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE79831
Comparison of wild type mouse lung cancer cell lines to transfected cell lines with Spp1 sh RNA
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

We compared different mouse cancer cell lines to identify their unique cell signatures.

Publication Title

Tumor-derived osteopontin isoforms cooperate with TRP53 and CCL2 to promote lung metastasis.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE29375
Time-course effect of APRIL on gene expression in HepG2 cells
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

APRIL (TNFSF13) is a ligand of the TNF superfamily which binds to two receptors, BCMA and TACI. We have found that APRIL and its receptor BCMA are specifically enhanced in hepatocellular carcinoma, as compared to non-cancerous liver tissue. We further identified that HepG2 cells present the same ligand/receptor pattern as human hepatocellular carcinomas. We investigated the role of APRIL in HepG2 gene expression in a time course study.

Publication Title

APRIL binding to BCMA activates a JNK2-FOXO3-GADD45 pathway and induces a G2/M cell growth arrest in liver cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP174055
Wnt1 silences CC/CXC motif chemokine genes in dendritic cells and induces adaptive immune resistance in lung adenocarcinoma
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Lung adenocarcinoma (LUAD)-derived oncogenic Wnts increase cancer cell proliferative/stemness potential, but whether they also impact the immune microenvironment is unknown. Here we show that LUAD cells use paracrine Wnt1 signaling to induce immune resistance. Wnt1 correlated strongly with tolerogenic genes on the TCGA expression data. In another cohort, Wnt1 was inversely associated with T cell abundance. Altering Wnt1 expression profoundly affected growth of murine lung adenocarcinomas and this was strongly dependent on conventional dendritic cells and T cells. Mechanistically, Wnt1 lead to transcriptional silencing of CC/CXC chemokines in dendritic cells and T cell cross-tolerance. Wnt-target genes were up-regulated in human intratumoral dendritic cells and decreased upon silencing Wnt1, accompanied by enhanced T cell cytotoxicity. siWnt1-loaded nanoparticles as single therapy or part of combinatorial immunotherapies acted at both arms of the cancer-immune ecosystem to halt tumor growth. Collectively, our studies show that Wnt1 enhances adaptive immune rejection of lung adenocarcinomas and highlight its potential targeting as a novel therapeutic strategy  Overall design: RNAseq data of two DC subsets of 4 patients with lung adenocarcinomas (LUADs).

Publication Title

Wnt1 silences chemokine genes in dendritic cells and induces adaptive immune resistance in lung adenocarcinoma.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon GSE94609
PD-1 regulates KLRG1+ group 2 innate lymphoid cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Group 2 innate lymphoid cells (ILC-2s) regulate immune responses to pathogens, allergens, tissue remodeling and metabolic homeostasis in response to cytokines. Positive regulation of ILC-2s through ICOS has been recently elucidated but co-receptor mediated negative regulatory axis is yet to be defined.

Publication Title

PD-1 regulates KLRG1<sup>+</sup> group 2 innate lymphoid cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP171054
Wnt1 silences CC/CXC motif chemokine genes in dendritic cells and induces adaptive immune resistance in lung adenocarcinoma
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

This study showed that the oncogenic ligand Wnt1 silences chemokine genes in dendritic cells, leading to impaired cross-priming of T cells in lung adenocarcinoma. Blocking Wnt1 enhanced rejection of tumors by acting concomitantly at the cancer and immune cell level. Overall design: 3' RNA-Seq (QuantSeq) profiling of sorted cDCs populations from WNT1 overexpressing and control (Empty) lung tumors.

Publication Title

Wnt1 silences chemokine genes in dendritic cells and induces adaptive immune resistance in lung adenocarcinoma.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE93371
Transcriptomic comparison of FVB mouse strain lung Cells one week upon injecting mice intraperitoneally with urethane and with the mouse lung adenocarcinoma cell line FULA 1
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Transcriptomic comparison of FVB mouse strain lung Cells one week upon injecting mice intraperitoneally with either saline or Urethane. Mouse lung cell were also compared at the transcriptomic level with the mouse lung adenocarcinoma cell line FULA 1, which was established in our lab

Publication Title

IκB Kinase α Is Required for Development and Progression of <i>KRAS</i>-Mutant Lung Adenocarcinoma.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE93370
Comparison of wild type mouse colon carcinoma cancer cell lines to transfected cell lines with Kras sh RNA
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We compared different mouse cancer cell lines to identify their unique cell signatures.

Publication Title

Myeloid-derived interleukin-1β drives oncogenic KRAS-NF-κΒ addiction in malignant pleural effusion.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE74309
Comparison of wild type mouse lung cancer cell lines to transfected cell lines with Nras sh RNA
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

We compared different mouse cancer cell lines to identify their unique cell signatures.

Publication Title

<i>NRAS</i> destines tumor cells to the lungs.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE58187
Comparison of mouse cancer cell line global gene expression [MG1]
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We compared different mouse cancer cell lines to identify their unique cell signatures.

Publication Title

Mutant KRAS promotes malignant pleural effusion formation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact