refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 864 results
Sort by

Filters

Technology

Platform

accession-icon GSE74681
Environmental enteric dysfunction includes a broad spectrum of inflammatory responses and epithelial repair processes.
  • organism-icon Homo sapiens
  • sample-icon 263 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Environmental enteric dysfunction (EED), a chronic diffuse inflammation of the small intestine, is associated with stunting in children in the developing world. The pathobiology of EED is poorly understood because of the lack of a method to elucidate the host response. This study utilized a novel microarray method to interrogate the host transcriptome in feces in Malawian children with EED. Our data showed that the children studied had a range of %L values, consistent a spectrum of EED from normal to severe. We identified 12 transcripts associated with the severity of EED, including chemokines that stimulate T-cell proliferation, Fc fragments of multiple immunoglobulin families, interferon-induced proteins, activators of neutrophils and B-cells, and mediators that dampen cellular responses to hormones. EED associated transcripts mapped to pathways related to cell adhesion, and responses to a broad spectrum of viral, bacterial and parasitic microbes and enhanced phagocytosis. Several mucins, regulatory factors and protein kinases associated with the maintenance of the mucous layer were expressed less in children with EED than normal children. In conclusion, EED represents the focused activation of elements of the immune system and is associated with widespread intestinal barrier disruption. The differentially expressed transcripts may be explored as potential biomarkers.

Publication Title

Environmental Enteric Dysfunction Includes a Broad Spectrum of Inflammatory Responses and Epithelial Repair Processes.

Sample Metadata Fields

Sex, Disease, Disease stage

View Samples
accession-icon GSE30459
Expression data from C2C12 cells with or without Smad3 overexpression
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The goal of this study was to identify genes in C2C12 myoblasts whose expression was altered by overexpression of Smad3.

Publication Title

Mutations in protein-binding hot-spots on the hub protein Smad3 differentially affect its protein interactions and Smad3-regulated gene expression.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE1722
Cross-platform reproducibility of oligonucleotide microarray expression profiles
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Both spotted long oligonucleotide arrays (GPL1384) and Affymetrix GeneChip arrays (GPL96) were used to analyze gene expression in six human head and neck squamous cell carinoma samples versus control samples or lymph node metastases of the same patients. Hybridizations of HG-U133A GeneChip arrays were performed using standard Affymetrix protocols and equipment. Before hybridization on DKFZ Operon 27k long oligonucleotide arrays, 2 g RNA were amplified by one round of linear isothermal RNA amplification, followed by Cy-dUTP incorporation using Klenow fragment. Hybridizations were performed for 16 h at 42 C in a GeneTAC Hybridization Station (Genomic Solutions) using UltraHyb hybridization buffer (Ambion). Hybridized microarrays were scanned at 5 m resolution on a GenePix 4000B microarray scanner (Axon Instruments). Raw signal intensities from both platforms were normalized applying variance stabilization (W. Huber et al., Bioinformatics 18 Suppl 1, 2002). Expression ratios were compared for those genes represented in both array platforms.

Publication Title

Patient-based cross-platform comparison of oligonucleotide microarray expression profiles.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE43517
Transcriptome analysis on whole kidney of Usp2 knockout mice
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Ubiquitylation plays an important role in the control of Na+ homeostasis by the kidney. It is well established that the epithelial Na+ channel ENaC is regulated by the ubiquitin-protein ligase NEDD4-2, limiting ENaC cell surface expression and activity. Ubiquitylation can be reversed by the action of deubiquitylating enzymes (DUBs). One such DUB, USP2-45, was identified previously as an aldosterone-induced protein in the kidney, and is also a circadian output gene. In heterologous expression systems USP2-45 binds to ENaC, deubiquitylates it and enhances channel density and activity at the cell surface. Because the role of USP2-45 in renal Na+ transport had not been studied in vivo, we investigated here the effect of Usp2 gene inactivation in this process. We demonstrate first that the USP2-45 protein has a rhythmic expression with a peak at ZT12. Usp2-KO mice did not show any differences to wild-type littermates with respect to the diurnal control of Na+ or K+ urinary excretion and plasma levels neither on standard diet, nor after acute and chronic changes to low and high Na+ diets, respectively. Moreover, they had similar aldosterone levels either at low or high Na+ diet. Blood pressure measurements using telemetry did not reveal variations as compared to control mice. Usp2-KO did neither display alternations in ENaC or Na+,Cl--cotransporter (NCC) expression, nor were there any changes in regulatory protein levels, as evidenced by immunoblotting and transcriptome analysis. We conclude that USP2-45 is not crucial for the regulation of Na+ balance or maintenance of blood pressure in vivo.

Publication Title

Mice carrying ubiquitin-specific protease 2 (Usp2) gene inactivation maintain normal sodium balance and blood pressure.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP075541
Unique Transcriptional Programs Identify Subtypes of AKI
  • organism-icon Mus musculus
  • sample-icon 53 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Two metrics, a rise in serum creatinine concentration and a decrease in urine output, are considered tantamount to the injury of the kidney tubule and the epithelial cells thereof (AKI).Yet neither criterion emphasizes the etiology or the pathogenetic heterogeneity of acute decreases in kidney excretory function. In fact, whether decreased excretory function due to contraction of the extracellular fluid volume (vAKI) or due to intrinsic kidney injury (iAKI) actually share pathogenesis and should be aggregated in the same diagnostic group remains an open question. To examine this possibility, we created mouse models of iAKI and vAKI that induced a similar increase in serum creatinine concentration. Using laser microdissection to isolate specific domains of the kidney, followed by RNA sequencing, we found that thousands of genes responded specifically to iAKI or to vAKI, but very few responded to both stimuli. In fact, the activated gene sets comprised different, functionally unrelated signal transduction pathways and were expressed in different regions of the kidney. Moreover, we identified distinctive gene expression patterns in human urine as potential biomarkers of either iAKI or vAKI, but not both. Hence, iAKI and vAKI are biologically unrelated, suggesting that molecular analysis should clarify our current definitions of acute changes in kidney excretory function. Overall design: Examining transcriptional profiles of two models of "acute kidney injury" (iAKI and pAKI), compared to controls, in different microanatomic regions of the kidney using laser capture microdissection

Publication Title

Unique Transcriptional Programs Identify Subtypes of AKI.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE18224
Female sex and oestrogen receptor attenuate cardiac remodelling and apoptosis in pressure overload
  • organism-icon Mus musculus
  • sample-icon 31 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Aims: We investigate sex differences and the role of oestrogen receptor beta (ERbeta) in a mouse model of pressure overload-induced myocardial hypertrophy. Methods and results: We performed transverse aortic constriction (TAC) or sham surgery in male and female wild-type (WT) and ERbeta knockout (ERbeta-/-) C57Bl6 mice. All mice were characterised by echocardiography and haemodynamic measurements and were sacrificed nine weeks after surgery. Left ventricular (LV) samples were analysed by microarray profiling, real-time RT-PCR and histology. After nine weeks, WT males showed more hypertrophy and heart failure signs than WT females. Notably, WT females developed a concentric form of hypertrophy, while males developed eccentric hypertrophy. These sex differences were abolished in ERbeta-/- mice. ERbeta deletion augmented the TAC-induced increase in cardiomyocyte diameter in both sexes. Gene expression profiling revealed that male WT hearts had a stronger induction of matrix-related genes and a stronger repression of mitochondrial genes than female hearts. ERbeta-/- mice exhibited a different transcriptome. Induction of pro-apoptotic genes after TAC occurred in ERbeta-/- mice of both sexes with a stronger expression in ERbeta-/- males. Histological analysis revealed, that cardiac fibrosis was more pronounced in male WT TAC than in female mice. This was abolished in ERbeta-/- mice. Apoptosis was significantly induced in both sexes of ERbeta-/- TAC mice, but it was most prominent in males. Conclusion: Female sex offers protection against ventricular chamber dilation in the TAC model. Both the female sex and ERbeta attenuate the development of fibrosis and apoptosis; thus slowing the progression to heart failure.

Publication Title

Female sex and estrogen receptor-beta attenuate cardiac remodeling and apoptosis in pressure overload.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE12945
Expression data from colorectal cancers
  • organism-icon Homo sapiens
  • sample-icon 62 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Wiskott-Aldrich syndrome (WAS) predisposes patients to leukemia and lymphoma. WAS is caused by mutations in the protein WASP which impair its interaction with the WIPF1 protein. Here, we aim to identify a module of WIPF1-coexpressed genes and to assess its use as a prognostic signature for colorectal cancer, glioma, and breast cancer patients. Two public colorectal cancer microarray data sets were used for discovery and validation of the WIPF1 co-expression module. Based on expression of the WIPF1 signature, we classified more than 400 additional tumors with microarray data from our own experiments or from publicly available data sets according to their WIPF1 signature expression. This allowed us to separate patient populations for colorectal cancers, breast cancers, and gliomas for which clinical characteristics like survival times and times to relapse were analyzed. Groups of colorectal cancer, breast cancer, and glioma patients with low expression of the WIPF1 co-expression module generally had a favorable prognosis. In addition, the majority of WIPF1 signature genes are individually correlated with disease outcome in different studies. Literature gene network analysis revealed that among WIPF1 co-expressed genes known direct transcriptional targets of c-myc, ESR1 and p53 are enriched. The mean expression profile of WIPF1 signature genes is correlated with the profile of a proliferation signature. The WIPF1 signature is the first microarray-based prognostic expression signature primarily developed for colorectal cancer that is instrumental in other tumor types: low expression of the WIPF1 module is associated with better prognosis.

Publication Title

An expression module of WIPF1-coexpressed genes identifies patients with favorable prognosis in three tumor types.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE25700
Comparative analysis of mouse cardiac gene expression: diet, sex, and disease
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

The perception that soy food products and dietary supplements will have beneficial effects on heart health has led to a massive consumer market. However, we have previously noted that diet has a profound effect on disease progression in a genetic model of hypertrophic cardiomyopathy (HCM). In this model, a soy-based diet negatively impacts cardiac function in male mice.

Publication Title

Remodeling the cardiac transcriptional landscape with diet.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP095604
Genome-wide transcriptome profiles in Control and Schizophrenia hiPSC-dervied NPC [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We Report the genome-wide RNA expression levels in control and schizophrenia hiPSC dervied NPC treated with neuronal media for 2 days. In total about 15,000 gene expression were detected in all samples, of which 1349 were dysregualted. Overall design: Examination, identification and comparision of mRNA expression profliles in control and schizophrenia npc

Publication Title

Common developmental genome deprogramming in schizophrenia - Role of Integrative Nuclear FGFR1 Signaling (INFS).

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE49859
Expression analysis from Runx2-deficient pDCs from mouse
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Plasmacytoid dendritic cells (pDCs) rapidly produce type I interferon (IFN-I) in response to viruses and are essential for antiviral immune responses. Although related to classical dendritic cells (cDCs) in their development and expression profile, pDCs possess many distinct features. Unlike cDCs, pDCs develop in the bone marrow (BM) and emerge into peripheral lymphoid organs and tissues as fully differentiated cells. We now report that pDCs specifically express Runx2, a Runt family transcription factor that is essential for bone development. Runx2-deficient murine pDCs developed normally in the BM but were greatly reduced in the periphery. The defect was cell-intrinsic and was associated with the retention of mature Ly49Q+ pDCs in the BM. Runx2 was required for the expression of several pDC-enriched genes including chemokine receptors Ccr2 and Ccr5. Mature pDCs expressed high levels of Ccr5 at the surface, and Ccr5-deficient pDCs in a competitive setting were reduced in the periphery relative to the BM. Thus, Runx2 is required for the emergence of mature BM pDCs into the periphery, in a process that is partially dependent on Ccr5. These results establish Runx2 as a lineage-specific regulator of immune system development.

Publication Title

Transcription factor Runx2 controls the development and migration of plasmacytoid dendritic cells.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact