refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1076 results
Sort by

Filters

Technology

Platform

accession-icon GSE10949
Kidney-specific Dysfunction of the Organic Anion Transporter MRP2 (ABCC2): Functional Consequences for Renal Grafts
  • organism-icon Rattus norvegicus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Transplanting renal allografts represents the major curative treatment of chronic renal failure. Despite recent advances in immunosuppressive therapy, long-term survival of allografts remains a major clinical problem. Kidney function depends in part on transport proteins such as MRP2 (ABCC2) which facilitates renal secretion of amphiphilic exogenous and endogenous compounds. Inherited variants of genes not related to the immune system have been shown to modify the outcome after renal transplantation. We investigated whether ABCC2 gene variants in the donor kidney affect renal graft function.

Publication Title

Multidrug resistance-related protein 2 genotype of the donor affects kidney graft function.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE14325
Malignant Fibrous Histiocytoma - Pleomorphic Sarcoma, NOS -Gene expression, Histology and clinical course -A pilot study
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

This study was performed to identify gene expression differences in not otherwise specified soft tissue sarcomas (NOS, malignant fibrous histiocytomas) and correlate them to histological findings and the clinical course. RNA was isolated and differential gene expression was analysed by the microarray technique.

Publication Title

Malignant fibrous histiocytoma--pleomorphic sarcoma, NOS gene expression, histology, and clinical course. A pilot study.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE2240
Comparison of atrial tissue of patients with atrial fibrillation and sinus rhythm with ventricular gene expression
  • organism-icon Homo sapiens
  • sample-icon 70 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

GSE2240 contains two different experimental subsets:

Publication Title

Functional profiling of human atrial and ventricular gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE79598
Expression data from H9 human embryonic stem cells (hESCs) infected with either lentiviral non-silencing shRNA or shRUNX1, and differentiated to early mesendoderm
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

We used microarrays to detail the global program of gene expression during early hESC differentiation to mesendoderm using FBS, with and without RUNX1 depletion.

Publication Title

Transient RUNX1 Expression during Early Mesendodermal Differentiation of hESCs Promotes Epithelial to Mesenchymal Transition through TGFB2 Signaling.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP066387
Histone H3 lysine 4 acetylation-methylation dynamics define breast cancer subtypes [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq1500

Description

The onset and progression of breast cancer are linked to genetic and epigenetic changes that alter the normal programming of cells. Epigenetic modifications of DNA and histones contribute to chromatin structure that results in the activation or repression of gene expression. Several epigenetic pathways have been shown to be highly deregulated in cancer cells. Targeting specific histone modifications represents a viable strategy to prevent oncogenic transformation, tumor growth or metastasis. Methylation of histone H3 lysine 4 has been extensively studied and shown to mark genes for expression; however this residue can also be acetylated and the specific function of this alteration is less well known. To define the relative roles of histone H3 methylation (H3K4me3) and acetylation (H3K4ac) in breast cancer, we determined genomic regions enriched for both marks in normal-like (MCF10A), transformed (MCF7) and metastatic (MDA-MB-231) cells using a genome-wide ChIP-Seq approach. Our data revealed a genome-wide gain of H3K4ac associated with both early and late breast cancer cell phenotypes, while gain of H3K4me3 was predominantly associated with late stage cancer cells. Enrichment of H3K4ac was overrepresented at promoters of genes associated with cancer-related phenotypic traits, such as estrogen response and epithelial-to-mesenchymal transition pathways. Our findings highlight an important role for H3K4ac in predicting epigenetic changes associated with early stages of transformation. In addition, our data provide a valuable resource for understanding epigenetic signatures that correlate with known breast cancer-associated oncogenic pathways. Overall design: RNA-Seq of cell lines MCF10A, MCF7 and MDA-MB-231.

Publication Title

Histone H3 lysine 4 acetylation and methylation dynamics define breast cancer subtypes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP061651
Tumor hypoxia causes DNA hypermethylation by reducing TET activity (RNA-Seq)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Hypermethylation of tumor suppressor gene (TSG) promoters confers growth advantages to cancer cells, but how these changes arise is poorly understood. Here, we report that tumor hypoxia reduces the activity of oxygen-dependent TET enzymes, which catalyze DNA de-methylation through 5-methylcytosine oxidation. This occurs independently of hypoxia-associated alterations in TET gene expression, basal metabolism, HIF activity or nuclear reactive oxygen species, but directly depends on oxygen shortage. Hypoxia-induced loss of TET activity increases hypermethylation at gene promoters in vitro, while also in patients, gene promoters are markedly more methylated in hypoxic than normoxic tumors. Affected genes are frequently involved in DNA repair, cell cycle regulation, angiogenesis and metastasis, indicating cellular selection of hypermethylation events. Overall, up to 50% of the tumor-associated hypermethylation is ascribable to hypoxia across various cancer types. Accordingly, spontaneous murine breast tumors become hypermethylated when rendered hypoxic through vessel pruning, whereas vessel normalisation rescues this effect. Tumor hypoxia thus acts as a novel regulator underlying DNA methylation. Overall design: RNAseq of MCF7 cells grown under hypoxic and normoxic conditions. Submission includes data on 5 independent RNAseq experiments, each containing biological replicates grown under hypoxic conditions (0.5% oxygen), and under normoxic conditions.

Publication Title

Tumour hypoxia causes DNA hypermethylation by reducing TET activity.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE54014
Genomic occupancy of Runx2 with global expression profiling identifies a novel dimension to the control of osteoblastogenesis
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genomic occupancy of Runx2 with global expression profiling identifies a novel dimension to control of osteoblastogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE53982
Runx2-mediated gene regulation is affected by its genomic occupancy
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Osteogenesis is a highly regulated developmental process and continues during the turnover and repair of mature bone. Runx2, the master regulator of osteoblastogenesis, directs a transcription program essential for bone formation through both genetic and epigenetic mechanisms. While individual Runx2 gene targets have been identified, further insights into the broad spectrum of Runx2 functions required for osteogenesis are needed. By performing genome-wide characterization of Runx2 binding at the three major stages of osteoblast differentiation: proliferation, matrix deposition and mineralization, we identified Runx2-dependent regulatory networks driving bone formation. Using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq) over the course of these stages, we discovered close to 80,000 significantly enriched regions of Runx2 binding throughout the mouse genome. These binding events exhibited distinct patterns during osteogenesis, and were associated with proximal promoters as well as a large percentage of Runx2 occupancy in non-promoter regions: upstream, introns, exons, transcription termination site (TTS) regions, and intergenic regions. These peaks were partitioned into clusters that are associated with genes in complex biological processes that support bone formation. Using Affymetrix expression profiling of differentiating osteoblasts depleted of Runx2, we identified novel Runx2 targets including Ezh2, a critical epigenetic regulator; Crabp2, a retinoic acid signaling component; Adamts4 and Tnfrsf19, two remodelers of extracellular matrix. We demonstrated by luciferase assays that these novel biological targets are regulated by Runx2 occupancy at non-promoter regions. Our data establish that Runx2 interactions with chromatin across the genome reveal novel genes, pathways and transcriptional mechanisms that contribute to the regulation of osteoblastogenesis.

Publication Title

Genomic occupancy of Runx2 with global expression profiling identifies a novel dimension to control of osteoblastogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE10935
Immune Dysregulation/Tumor-Associated Gene Changes in Recurrent Respiratory Papillomatosis: A Paired Microarray Analysis
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

The goal of this study was to determine the differential expression of specific genes within the papilloma tissues themselves and to characterize the array of host genes that might be important in the pathophysiology of recurrent respiratory papillomatosis.

Publication Title

Immune dysregulation and tumor-associated gene changes in recurrent respiratory papillomatosis: a paired microarray analysis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE87671
Identifying Nuclear Matrix-attached DNA across the Genome
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identifying Nuclear Matrix-Attached DNA Across the Genome.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact