refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 419 results
Sort by

Filters

Technology

Platform

accession-icon GSE40182
Culturing Cytotrophoblasts Reverses Gene Dysregulation in Preeclampsia Revealing Possible Causes
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

During human pregnancy, a subset of placental cytotrophoblasts (CTBs) differentiates into cells that aggressively invade the uterus and its vasculature, anchoring the progeny and rerouting maternal blood to the placenta. In preeclampsia (PE), CTB invasion is limited, reducing placental perfusion and/or creating intermittent flow. This syndrome, affecting 4-8% of pregnancies, entails maternal vascular alterations (e.g., high blood pressure, proteinuria, and edema) fetal growth restriction. The only cure is removal of the faulty placenta, i.e., delivery. Previously we showed that defective CTB differentiation contributes to the placental component of PE, but the causes were unknown. Here, CTBs isolated from PE and control placentas were cultured for 48 h, enabling differentiation/invasion. In various severe forms of PE, transcriptomics revealed common aberrations in CTB gene expression immediately after isolation that resolved in culture. The upregulated genes included SEMA3B. Adding this protein to normal CTBs inhibited invasion and re-created aspects of the phenotype of these cells in PE. Additionally, SEMA3B downregulated VEGF signaling through the PI3K/AKT and GSK3 pathways, effects that were observed in PE CTBs. We propose that, in severe PE, the in vivo environment dysregulates CTB gene expression, the autocrine actions of the upregulated molecules, including SEMA3B, impair differentiation/invasion/signaling and patient-specific factors determine the signs.

Publication Title

Reversal of gene dysregulation in cultured cytotrophoblasts reveals possible causes of preeclampsia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE48760
Transcriptomes of the hybrid mouse diversity panel subjected to Isoproterenol challenge
  • organism-icon Mus musculus
  • sample-icon 208 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Transcriptomes performed on left ventricular heart samples from mice of the hybrid mouse diversity panel, a set of over a hundred inbred strains of mice. In this project, the strains were challenged with Isoproterenol, a beta-adrenergic agonist to induce cardiac hypertrophy and failure. Results are useful for the analysis of heart-related traits in mice

Publication Title

Genetic Dissection of Cardiac Remodeling in an Isoproterenol-Induced Heart Failure Mouse Model.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP066865
miRNA-1343 attenuates pathways of fibrosis by targeting the TGF-beta receptors [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

miRNA-1343 is an uncharacterized miRNA predicted to target a number of genes involved in epithelial cell function including TGF-beta signaling, cell adhesion, and cell proliferation. We transiently overexpressed miRNA-1343 or a non-targeting control miRNA in A549 and 16HBE14o- human airway cell lines. As predicted, RNA-seq following miRNA-1343 overexpression showed significant downregulation of genes involved in these pathways. Furthermore, genes involved in cholesterol and lipid biosynthesis were found to be significantly upregulated by miRNA-1343 overexpression. Overall design: mRNA profiles from A549 and 16HBE14o- cells transiently transfected with miRNA-1343 or a negative control (NC) miRNA, in quintuplicate.

Publication Title

miR-1343 attenuates pathways of fibrosis by targeting the TGF-β receptors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13477
Gene Expression Analysis of ARC (NSC 188491) Treated MCF7 cells
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

ARC (NSC 188491, SMA-491), 4-amino-6-hydrazino-7-beta-d-ribofuranosyl-7H-pyrrolo-(2,3-d)-pyrimidine-5-carboxamide, is a nucleoside analog with profound in vitro anti-cancer activity. First identified in a high-throughput screen for inhibitors of p21 mRNA expression, subsequent experiments showed that ARC also repressed expression of hdm2 and survivin, leading to its classification as a global inhibitor of transcription 1. The following Hu U133 plus 2.0 arrays represent single time point (24 hour) gene expression analysis of transcripts altered by ARC treatment. Arrays for the other compounds (sangivamycin and doxorubicin) are included as comparators.

Publication Title

ARC (NSC 188491) has identical activity to Sangivamycin (NSC 65346) including inhibition of both P-TEFb and PKC.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE8391
Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component
  • organism-icon Drosophila melanogaster
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2), Affymetrix Drosophila Genome Array (drosgenome1)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP033129
Differential gene expression in nephron progenitors lacking miR-17~92
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: The goal of this study is to compare the differential expression of transcripts in control kidneys compared to kidneys lacking the miR-17~92 cluster in nephron progenitors and their derivatives by RNA-seq to identify potential miRNA targets in the mutant kidneys. Overall design: mRNA profiles of control and mutant (=Six2-TGC; miR-17~92 flx/flx) embryonic day 16 kidneys were generated by deep sequencing, in triplicate, using Illumina HiSeq2000

Publication Title

MicroRNA-17~92 is required for nephrogenesis and renal function.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7646
CLK targets from fly heads
  • organism-icon Drosophila melanogaster
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

CLK targets from fly heads using the TIM-GAL4; UAS-CLKGR line

Publication Title

Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7652
Timepoints Control strain
  • organism-icon Drosophila melanogaster
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

6 Timepoint microarray from control strain

Publication Title

Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7651
Timepoints 5073 strain
  • organism-icon Drosophila melanogaster
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

6 Timepoints from 5073 strain

Publication Title

Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7644
CLKGR in S2 cells
  • organism-icon Drosophila melanogaster
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

Experiments performed in S2 cells to identify direct CLK targets

Publication Title

Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact