refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 184 results
Sort by

Filters

Technology

Platform

accession-icon GSE45487
Identification of genes responsive to low-intensity pulsed ultrasound (LIPUS) in MC3T3-E1 preosteoblast cells
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Although LIPUS has been shown to enhance fracture healing, the underlying mechanism of LIPUS remains to be fully elucidated. Here, to understand the molecular mechanism underlying cellular responses to LIPUS, we investigated gene expression profiles in mouse MC3T3-E1 preosteoblast cells using a GeneChip system.

Publication Title

Genes responsive to low-intensity pulsed ultrasound in MC3T3-E1 preosteoblast cells.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Time

View Samples
accession-icon GSE107041
The whole genome effects of the PPAR agonist fenofibrate on livers of hepatocyte humanized mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

The role of PPAR in gene regulation in mouse liver is well characterized. However, less is known about the effect of PPAR activation in human liver. The aim of the present study was to better characterize the impact of PPAR activation on gene regulation in human liver by combining transcriptomics with the use of hepatocyte humanized livers. To that end, chimeric mice containing hepatocyte humanized livers were given an oral dose of 300 mg/kg fenofibrate daily for 4 days. Livers were collected and analysed by hematoxilin and eosin staining, qPCR, and transcriptomics. Transcriptomics data were compared with existing datasets on fenofibrate treatment in normal mice. The human hepatocytes exhibited excessive lipid accumulation. Fenofibrate increased the size of the mouse but not human hepatocytes, and tended to reduce steatosis in the human hepatocytes. Quantitative PCR indicated that induction of PPAR targets by fenofibrate was less pronounced in the human hepatocytes than in the residual mouse hepatocytes. Transcriptomics analysis indicated that, after filtering, a total of 282 genes was significantly different between fenofibrate- and control-treated mice (P<0.01). 123 genes were significantly lower and 159 genes significantly higher in the fenofibrate-treated mice, including many established PPAR targets such as FABP1, HADHB, HADHA, VNN1, PLIN2, ACADVL and HMGCS2. According to gene set enrichment analysis, fenofibrate upregulated interferon/cytokine signaling-related pathways in hepatocyte humanized liver, but downregulated these pathways in normal mouse liver. Also, fenofibrate downregulated pathways related to DNA synthesis in hepatocyte humanized liver but not in normal mouse liver. The results support the major role of PPAR in regulating hepatic lipid metabolism, and underscore the more modest effect of PPAR activation on gene regulation in human liver compared to mouse liver. The data suggest that PPAR may have a suppressive effect on DNA synthesis in human liver, and a stimulatory effect on interferon/cytokine signalling.

Publication Title

The whole transcriptome effects of the PPARα agonist fenofibrate on livers of hepatocyte humanized mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE38309
Expression data from A549 cells after treatment with flagellin and transforming growth factor beta 1
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We have examined the changes in gene expression aftert reatment of A549 cells, a cultured alveolar epithelial cells, with flagellin and transforming growth factor beta 1.

Publication Title

Induction of epithelial-mesenchymal transition by flagellin in cultured lung epithelial cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE50738
Expression data from human induced pluripotent stem cells derived retinal pigment epithelium (hiPSC-RPE)
  • organism-icon Homo sapiens
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We generated hiPSCs from patients fibloblast with retinitis pigmentosa (RP) using retrovirus and Sendai virus vectors, which we differentiated into hiPSC derived retinal pigment epithelium using two different methods (SDIA and SFEB methods).

Publication Title

Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE31434
Expression data from HeLa cells transfected with SLC44A5
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We identified SLC44A5 as a gene associated with birth weight in cattle based on genome wide association studies.

Publication Title

The molecular effects of a polymorphism in the 5'UTR of solute carrier family 44, member 5 that is associated with birth weight in Holsteins.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE5231
IGF1R Mediates Mammalian Immune Function in Response to FEZL
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Evidence that bovine forebrain embryonic zinc finger-like gene influences immune response associated with mastitis resistance.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE5225
Expression data from OCUBM cells trasfected with IGF1R
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To investigate genes that might influence resistance to infection through IGF1R, we screened human breast cancer-derived OCUB-M cells transfected with expression vector encoding IGF1R using microarray analysis.

Publication Title

Evidence that bovine forebrain embryonic zinc finger-like gene influences immune response associated with mastitis resistance.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE5224
Expression data from OCUBM cells trasfected with 12G FEZL
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To identify genes that influence resistance to mastitis, we scanned

Publication Title

Evidence that bovine forebrain embryonic zinc finger-like gene influences immune response associated with mastitis resistance.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE54056
Expression data from adult mouse normal and damaged retina from B6 and 129 mouse strains
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Retinal damage causes proliferation of Muller glia, but the degree of proliferation depends on mouse strains. Muller glial proliferation was significantly promoted by the addition of GSK3 inhibitor in 129, but not in B6. We used retinal explant culture as a model for retinal damage which caused preferential photoreceptor death in a few days.

Publication Title

Proliferation potential of Müller glia after retinal damage varies between mouse strains.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP061376
Suppression of ischemia in arterial occlusive disease by JNK-promoted native collateral artery development
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Arterial occlusive diseases are major causes of morbidity and mortality. Blood flow to the affected tissue must be restored quickly if viability and function are to be preserved. Collaterals are artery-to-artery or arteriole-to-arteriole interconnections that can bypass an occlusion by providing an alternative route for blood flow to the affected tissue. The increased flow and sheer stress initiate processes that result in the remodeling (arteriogenesis) of these vessels into efficient conductance arteries. Here we report that the mixed-lineage kinase (MLK) pathway activates cJun NH2-terminal kinase (JNK) in endothelial cells. Disruption of Mlk2/3 or Jnk1/2 genes caused severe blockade of blood flow and failure to recover in the femoral artery ligation model of hindlimb ischemia because of abnormal collateral arteries. We show that the MLK-JNK pathway is essential for patterning and maturation of collateral arteries during development, but this pathway is not required for angiogenesis or arteriogenesis in adults. JNK in endothelial cells promotes Delta-like 4-induced Notch signaling and suppresses excessive sprouting angiogenesis during development. This function of the MLK-JNK pathway contributes to normal formation of native collateral arteries. The MLK-JNK pathway is therefore a key regulatory mechanism for vascular development. These data highlight the crucial importance of the collateral circulation in the response to arterial occlusive diseases. Overall design: RNA-seq analysis of mouse lung endothelial cells (MLEC) of the following genotypes Cdh5-Cre+ Jnk1+/+ Jnk2+/+ Jnk3-/-(ECtrl), Cdh5-Cre- Jnk1LoxP/LoxP Jnk2LoxP/LoxP Jnk3-/- (EfCtrl), and Cdh5-Cre+ Jnk1LoxP/LoxP Jnk2LoxP/LoxP Jnk3-/- (E3KO). Three separate samples from mouse lung endothelial cells of each genotype were analyzed.

Publication Title

Suppression of ischemia in arterial occlusive disease by JNK-promoted native collateral artery development.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact