refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 184 results
Sort by

Filters

Technology

Platform

accession-icon GSE55845
Analysis of transcriptomic diversitification of developing cumulus and mural granulosa cells in mouse ovarian follicles
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Cumulus cells and mural granulosa cells (MGCs) are spatially and functionally distinct cell types in antral follicles: cumulus cells contact the oocyte and most MGCs contact the basal lamina. For transcriptomic analyses, both cell types were collected from small and large antral follicles, before and after stimulation of immature mice with eCG, respectively. Both cell types underwent dramatic transcriptomic changes and the differences between them became greater with follicular growth. Although cumulus cells of both stages of follicular development are competent to undergo expansion in vitro, they were otherwise remarkably dissimilar with transcriptomic changes quantitatively equivalent to those of MGCs. Gene Ontology (GO) analysis showed that cumulus cells of small follicles were enriched in transcripts generally associated with catalytic components of metabolic processes while those from large follicles were involved in regulation of metabolism, cell differentiation, and adhesion. Upon contrasting cumulus cells versus MGCs, cumulus cells were enriched in transcripts associated with metabolism and cell proliferation while MGCs were enriched for transcripts involved in cell signaling and differentiation.

Publication Title

Transcriptomic diversification of developing cumulus and mural granulosa cells in mouse ovarian follicles.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE47967
Cooperation of estrogen and oocytes on gene expression in mouse cumulus cells
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Oocyte-derived paracrine factors and estrogens cooperate to regulate the function and development of mouse cumulus cells.

Publication Title

Cooperative effects of 17β-estradiol and oocyte-derived paracrine factors on the transcriptome of mouse cumulus cells.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE18854
Time course analysis of dedifferentiation in porcine follicular granulosa cells
  • organism-icon Sus scrofa
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

Cellular dedifferentiation signifies the withdrawal of cells from a specific differentiated state into a stem cell-like undifferentiated state. However, the mechanism of dedifferentiation remains obscure. We showed that follicular granulosa cells (GC), which have distinct functions in vivo, can dedifferentiate during culture in vitro and acquire multipotency.

Publication Title

Dedifferentiated follicular granulosa cells derived from pig ovary can transdifferentiate into osteoblasts.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE5668
Identification and characterization of the changed and stable transcripts during mouse oocyte maturation
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

There is massive destruction of transcripts during maturation of mouse oocytes. The objective of this project was to identify and characterize the transcripts that are degraded versus those that are stable during the transcriptionally silent germinal vesicle (GV)-stage to metaphase II (MII)-stage transition using the microarray approach. A system for oocyte transcript amplification using both internal and 3-poly(A) priming was utilized to minimize the impact of complex variations in transcript polyadenylation prevalent during this transition. Transcripts were identified and quantified using Affymetrix Mouse Genome 430 v2.0 GeneChip. The significantly changed and stable transcripts were analyzed using Ingenuity Pathways Analysis and GenMAPP/MAPPFinder to characterize the biological themes underlying global changes in oocyte transcripts during maturation. It was concluded that the destruction of transcripts during the GV to MII transition is a selective rather than promiscuous process in mouse oocytes. In general, transcripts involved in processes that are associated with meiotic arrest at the GV-stage and the progression of oocyte maturation, such as oxidative phosphorylation, energy production, and protein synthesis and metabolism, were dramatically degraded. In contrast, transcripts encoding participants in signaling pathways essential for maintaining the unique characteristics of the MII-arrested oocyte, such as those involved in protein kinase pathways, were the most prominent among those stables.

Publication Title

Selective degradation of transcripts during meiotic maturation of mouse oocytes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7225
Identification and characterization of the changed transcripts in cumulus cells of Bmp15-/- and Bmp15-/-Gdf9+/--DM mice.
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Mouse oocytes control cumulus cell metabolic processes that are deficient in the oocytes themselves and this delegation is necessary for oocyte development. Oocyte-derived bone morphogenetic factor 15 (BMP15) and growth differentiation factor 9 (GDF9) appear to be key regulators of follicular development. The effect of these factors on cumulus cell function before the preovulatory surge of luteinizing hormone (LH) was assessed by analysis of the transcriptomes of cumulus cells from wildtype (WT), Bmp15-/-, and Bmp15-/- Gdf9+/- double mutant (DM) mice using microarray analysis. The biological themes associated with the most highly-affected transcripts were identified using bioinformatic approaches, IPA and GenMAPP/MAPPFinder. There were 5,332, 7,640, and 2,651 transcripts identified to be significantly changed in the comparisons of Bmp15-/- vs. WT, DM vs. WT, and DM vs. Bmp15-/- respectively by the criteria of FC (fold change) p <0.01. Among theses changed transcripts, 744 were commonly changed in all three pair-wise comparisons, and hence were considered to be the most highly affected transcripts by mutation of Bmp15 and Gdf9. IPA Analyses revealed that metabolism was the major theme associated with the most highly-changed transcripts: glycolysis and sterol biosynthesis were the two most significantly affected pathways. Most of the transcripts encoding enzymes for sterol biosynthesis were down-regulated in both mutant cumulus cells and in WT cumulus cell after oocytectomy. Similarly, there was a reduction of de novo-synthesized cholesterol in these cumulus cells. This suggests that oocytes regulate cumulus cell metabolism, particularly sterol biosynthesis, by promoting the expression of corresponding transcripts. Furthermore, in WT-mice, Mvk, Pmvk, Fdps, Sqle, Cyp51, Sc4mol, and Ebp, which encode enzymes in the sterol biosynthetic pathway, were found to be expressed robustly in cumulus cells, but expression was barely detectable in oocytes. Levels of de novo-synthesized cholesterol were significantly higher in cumulusenclosed oocytes than denuded oocytes. These results indicate that mouse oocytes are deficient in their ability to synthesize cholesterol and require cumulus cells to provide them with products of the sterol biosynthetic pathway. Oocyte-derived BMP15 and GDF9 may promote this metabolic pathway in cumulus cells as compensation for their own deficiencies.

Publication Title

Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE31985
Comparison of transcriptomes between Marf1+/+ (WT) and Marf1 ENU/ENU (Mutant) fully-grown oocytes (FGO)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Marf1 (MUT) female mice are infertile and the meiosis of the oocytes are arrest at prophase I. We thought to identify the potential causes of the meiotic arrest phenotype in the mutant oocytes by comparing the transcriptomes of the WT and mutant fully-grown oocytes (from 23-d old mice) that are transcriptional silent.

Publication Title

MARF1 regulates essential oogenic processes in mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE31434
Expression data from HeLa cells transfected with SLC44A5
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We identified SLC44A5 as a gene associated with birth weight in cattle based on genome wide association studies.

Publication Title

The molecular effects of a polymorphism in the 5'UTR of solute carrier family 44, member 5 that is associated with birth weight in Holsteins.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE5231
IGF1R Mediates Mammalian Immune Function in Response to FEZL
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Evidence that bovine forebrain embryonic zinc finger-like gene influences immune response associated with mastitis resistance.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE5225
Expression data from OCUBM cells trasfected with IGF1R
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To investigate genes that might influence resistance to infection through IGF1R, we screened human breast cancer-derived OCUB-M cells transfected with expression vector encoding IGF1R using microarray analysis.

Publication Title

Evidence that bovine forebrain embryonic zinc finger-like gene influences immune response associated with mastitis resistance.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE5224
Expression data from OCUBM cells trasfected with 12G FEZL
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To identify genes that influence resistance to mastitis, we scanned

Publication Title

Evidence that bovine forebrain embryonic zinc finger-like gene influences immune response associated with mastitis resistance.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact