refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 14 results
Sort by

Filters

Technology

Platform

accession-icon GSE3790
Human cerebellum, frontal cortex [BA4, BA9] and caudate nucleus HD tissue experiment
  • organism-icon Homo sapiens
  • sample-icon 404 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Post mortem human brain tissue comparison between HD patients and controls from 3 brain regions - cerebellum, frontal cortex [BA4, BA9] and caudate nucleus. Gene expression analysed using linear models from LIMMA package in Bioconductor suite.

Publication Title

Regional and cellular gene expression changes in human Huntington's disease brain.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP119536
Roles of female and male genotype in post-mating responses in Drosophila melanogaster
  • organism-icon Drosophila melanogaster
  • sample-icon 79 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: Mating induces a multitude of changes in female behavior, physiology and gene expression. Interactions between female and male genotype lead to variation in post-mating phenotypes and reproductive success. So far, few female molecules responsible for these interactions have been identified. Methods: We used Drosophila melanogaster from five geographically dispersed populations to investigate such female x male genotypic interactions at the female transcriptomic and phenotypic levels. Methods: Females from each line were singly-mated to males from the same five lines, for a total of 25 combinations. To assess whether female x male genotypic interactions affect the female post-mating transcriptome, next-generation RNA sequencing was performed on virgin and mated females at 5 to 6 hours post-mating. Results: Seventy-seven genes showed strong variation in mating-induced expression changes in a female x male genotype-dependent manner. These genes were enriched for immune response and odorant-binding functions, and for expression exclusively in the head. Conclusions: The transcriptional variation found in specific functional classes of genes might be a read-out of female x male compatibility at a molecular level. Understanding the roles these genes play in the female post-mating response will be crucial to better understand the evolution of post-mating responses and related conflicts between the sexes. Overall design: Five Drosophila melanogaster inbred lines were used. These lines are derived from five geographically dispersed populations (Global Diversity Lines Beijing 04; Ithaca 16; Netherlands 01; Tasmania 01 and Zimbabwe 184 – the latter line was collected in Africa, but turned out to be a recent migrant) (Grenier et al., 2015). Virgin females from each line were singly-mated to virgin males from each of the five inbred lines, similar to a 5x5 full factorial design. For RNAseq, mated females were flash frozen 5 to 6h after the start of mating. Age-matched virgin females were flash-frozen in parallel. Three independent biological replicates were generated for each of the 25 mating combinations and for virgin females of each genotype (90 samples total). Flies from each replicate were collected from separate bottles, and matings for all three replicates were set up simultaneously. RNA was extracted from five to ten pooled females per replicate.

Publication Title

Roles of Female and Male Genotype in Post-Mating Responses in Drosophila melanogaster.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP128653
Human iPS-derived astroglia from a stable neural precursor state; improved functionality compared to conventional astrocytic models
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Characterization of different astrocytes soruces was done using RNAseq including samples from human primary adult brain, astrocytoma, and hiPSC derived astrocytes including neural stem cell origin Overall design: Full RNAseq (>200nt) of biological triplicates isolated with Illumina TrueSeq Stranded mRNA LT Sample Prep Kit and sequenced using Illumina NextSeq 500 sequencer

Publication Title

Human iPS-Derived Astroglia from a Stable Neural Precursor State Show Improved Functionality Compared with Conventional Astrocytic Models.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP159868
Effects of Polybrominated Diphenyl Ether (PBDE) Mixture on estrogen receptor positive (ER+) patient-derived tumor xenograft (PDX) model
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

ER+ PDX (COH-SC31) were exposed to PBDE mixture for 1 weeks. RNA-sequencing analysis was performed to evalaute the gene expression changes. Overall design: RNA-Seq gene expression was compared between control (DMSO, dimethyl sulfoxide) and treatment with mixture of PBDEs.

Publication Title

Molecular Mechanisms of Polybrominated Diphenyl Ethers (BDE-47, BDE-100, and BDE-153) in Human Breast Cancer Cells and Patient-Derived Xenografts.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon GSE100935
Gene expression data of human gastric tumors
  • organism-icon Homo sapiens
  • sample-icon 61 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Tumors of advanced gastric cancer patients were biopsied and subjected to gene expression profiling using the Affymetrix Human Genome U133 Plus 2.0 Arrays. Patients were then segregated into G1, G2 or G3 groups based on their tumor genomic profiles. Patients in the G1 and G3 cohorts were assigned SOX (oxaliplatin plus S-1) chemotherapy whereas those in the G2 cohort were given SP (cisplatin plus S-1) regimen.

Publication Title

Real-Time Tumor Gene Expression Profiling to Direct Gastric Cancer Chemotherapy: Proof-of-Concept "3G" Trial.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE108113
Shared molecular targets in the glomerular and tubulointerstitial transcriptomes from patients with nephrotic syndrome and ANCA-associated vasculitis
  • organism-icon Homo sapiens
  • sample-icon 275 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

This SuperSeries is composed of the SubSeries listed below. A subset of samples profiled in this analysis were also profiled in Series GSE68127, and GSE104066. Corresponding glomerular transcriptome data can be found under GEO ID: GSE108109.

Publication Title

Metabolic pathways and immunometabolism in rare kidney diseases.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE104948
Glomerular Transcriptome from European Renal cDNA Bank subjects and living donors
  • organism-icon Homo sapiens
  • sample-icon 196 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

summary : Glomerular Transcriptome from European Renal cDNA Bank subjects and living donors. Samples included in this analysis have been previously analyzed using older CDF definitions and are included under previous GEO submissions - GSE47183 (chronic kidney disease samples), and GSE32591 (IgA nephropathy samples).

Publication Title

Metabolic pathways and immunometabolism in rare kidney diseases.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE104954
Tubulointerstitial transcriptome from ERCB subjects with chronic kidney disease and living donor biopsies.
  • organism-icon Homo sapiens
  • sample-icon 194 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

summary : Tubulointerstitial transcriptome from ERCB subjects with chronic kidney disease and living donor biopsies. Samples included in this analysis have been previously analyzed using older CDF definitions and are included under previous GEO submissions - GSE47184 (chronic kidney disease samples), and GSE32591 (IgA nephropathy samples).

Publication Title

Metabolic pathways and immunometabolism in rare kidney diseases.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE108112
Shared molecular targets in the tubulointerstitial transcriptome from patients with nephrotic syndrome and ANCA-associated vasculitis
  • organism-icon Homo sapiens
  • sample-icon 169 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

Tubulointerstitial transcriptome from human kidney biopsies in Neptune and ERCB. A number of samples profiled in this analysis were also profiled in Series GSE68127.

Publication Title

Metabolic pathways and immunometabolism in rare kidney diseases.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE108109
Shared molecular targets in the glomerular transcriptome from patients with nephrotic syndrome and ANCA-associated vasculitis
  • organism-icon Homo sapiens
  • sample-icon 106 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

Glomerular transcriptome from human kidney biopsies in Neptune and ERCB. A subset of samples profiled in this analysis were also profiled in Series GSE68127, and in GSE104066. Corresponding tubulointerstitial transcriptome data is submitted under GEO ID: GSE108113.

Publication Title

Metabolic pathways and immunometabolism in rare kidney diseases.

Sample Metadata Fields

Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact