refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 148 results
Sort by

Filters

Technology

Platform

accession-icon GSE109578
Expression data from mouse adrenal glands extracted from wild-type and sf1:Cre; Ezh2 Fl/Fl (KO) adrenals
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Ezh2 encodes the catalytic subunit of the polycomb repressive complex 2 epigenetic regulator. Its ablation in the adrenal cortex results in profound alterations of adrenal homeostasis.

Publication Title

Steroidogenic differentiation and PKA signaling are programmed by histone methyltransferase EZH2 in the adrenal cortex.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP049648
Integrin avß3 acting as membrane receptor for thyroid hormones mediates angiogenesis in malignant T cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

We have found that thyroid hormones (THs), acting as soluble integrin avß3 ligands, activate growth-related signaling pathways in T-cell lymphomas (TCL). Specifically, TH-activated avß3 integrin signaling promotes TCL proliferation and angiogenesis, in part, via the up-regulation of VEGF. Overall design: CUTLL1 cells were treated with T3- and T4-bound agarose or agarose alone for 24hrs. Total RNA was harvested from cells and used for expression profiling via RNA-seq.

Publication Title

Integrin αvβ3 acting as membrane receptor for thyroid hormones mediates angiogenesis in malignant T cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE49918
Polyamines are critical for the induction of the glutamate decarboxylase-dependent acid resistance system in Escherichia coli
  • organism-icon Escherichia coli
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

As part of our studies on the biological functions of polyamines we have used a mutant of Escherichia coli that lacks all the genes for polyamine biosynthesis for a global transcription analysis on the effect of added polyamines. The most striking early response to polyamine addition is the increased expression of the genes for the glutamate dependent acid resistance system (GDAR) that is essential for the survival of bacteria when passing through the acid environment of the stomach. Not only were the two genes for glutamate decarboxylases (gadA and gadB) and the gene for glutamate --aminobutyrate antiporter (gadC) induced by polyamine addition, but also the various genes involved in the regulation of this system were induced. We confirmed the importance of polyamines for the induction of the GDAR system by direct measurement of glutamate decarboxylase activity and acid-survival. Effects of deletions of the regulatory genes in the GDAR system and on the effects of overproduction of two of these genes were also studied. Strikingly, overproductions of the alternate sigma factor rpoS and of the regulatory gene gadE resulted in very high levels of glutamate decarboxylase and almost complete protection against acid stress even in the absence of any polyamines. Thus, these data show that a major function of polyamines in E. coli is protection against acid stress by increasing the synthesis of glutamate decarboxylase, presumably by increasing the levels of the rpoS and gadE regulators.

Publication Title

Polyamines are critical for the induction of the glutamate decarboxylase-dependent acid resistance system in Escherichia coli.

Sample Metadata Fields

Treatment

View Samples
accession-icon SRP092402
A blood RNA signature for predicting the treatment outcome in the Tuberculosis Treatment Response Cohort
  • organism-icon Homo sapiens
  • sample-icon 909 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Identification of blood biomarkers that prospectively predict Mycobacterium tuberculosis treatment response. Overall design: There are a total of 914 samples used in this design. This involves samples from 100 cases and 38 controls. Most of the samples have 2 technical replicates where as 2 samples have 4. Samples from the TB cases have been collected on the start day of TB treatment and on 1,4 and 24 weeks after treatment as well. For some subjects we also have samples after the subject has been cured. The case or TB Subjects have been categorized by the nature of their response as definite,probable or possible cure. The day of cure is presented in the time to negativity column. Also provided in the metadata are the MGIT -Mycobacteria Growth Indicator Tube and XPERT (cartridge based nucleic acid amplification test, automated diagnostic test that can identify Mycobacterium tuberculosis (MTB)) values at the various times of sample collection for all TB Subjects.

Publication Title

Host blood RNA signatures predict the outcome of tuberculosis treatment.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Subject, Time

View Samples
accession-icon SRP049769
Combinatorial targeting of nuclear export and translation of RNA inhibits aggressive B-cell lymphoma
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Aggressive double and triple hit (DH/TH) DLBCL feature activation of Hsp90 stress pathways. Herein, we show that Hsp90 controls post-transcriptional dynamics of key mRNA species including those encoding BCL6, MYC and BCL2. Using a proteomics approach, we found that Hsp90 binds to and maintains activity of eIF4E (eukaryotic translation initiation factor 4E). EIF4E drives nuclear export and translation of BCL6, MYC and BCL2 mRNA. eIF4E RIP-sequencing in DLBCL suggests that nuclear eIF4E controls an extended program that includes BCR signaling, cellular metabolism and epigenetic regulation. Accordingly, eIF4E was required for survival of DLBCL including the most aggressive subtypes DH/TH lymphomas. Indeed, eIF4E inhibition induces tumor regression in cell line and patient-derived tumorgrafts of TH-DLBCL, even in the presence of elevated Hsp90 activity. Targeting Hsp90 is typically limited by counter-regulatory elevation of Hsp70B, which induces resistance to Hsp90 inhibitors. Surprisingly, we identify Hsp70 mRNA as an eIF4E target. In this way, eIF4E inhibition can overcome drug resistance to Hsp90 inhibitors. Accordingly, rational combinatorial inhibition of eIF4E and Hsp90 inhibitors resulted in cooperative anti-lymphoma activity in DH/TH DLBCL in vitro and in vivo. Overall design: We found that eIF4E activity regulates the nuclear export of BCL6, MYC, and BCL2 in DH/TH DLBCLs. To determine the extent of nuclear eIF4E activity in DH/TH DLBCLs and how these programs can support the oncogenic activity of BCL6, MYC and/or BCL2 transcripts, we conducted eIF4E-RIP of nuclear RNA followed by RNA-sequencing in OCI-Ly1 cells in triplicates. To understand the changes in gene expression after ribavarin in a clinically relevant sample, we generated a patient-derived xenograft (PDX) in NSG mice from a de-identified specimen isolated from a patient prior to treatment harboring a triple-hit ABC-type DLBCL. PDX cells from passage four (PDX-4) were implanted into NSG mice. When tumors were palpable, mice were randomized to receive vehicle or 80 mg/kg/b.i.d. ribavarin intraperitoneally for 10 days. We isolated RNA from tumors treated with vehicle (n=2) or ribavarin (n=2) and performed mRNA-seq.

Publication Title

Combinatorial targeting of nuclear export and translation of RNA inhibits aggressive B-cell lymphomas.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE30679
Escherichia coli glutathionylspermidine: Phylogeny and regulation of gene expression
  • organism-icon Escherichia coli
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

Glutathionylspermdine synthetase/amidase (Gss) and the encoding gene (gss) have only been described in two widely separated species; namely Escherichia coli and several members of the Kinetoplastida phyla. In the present paper we have studied the species distribution more extensively. It is striking that all of the 75 Enterobacteria species that has been sequenced contain sequences with very high degree of homology to the E. coli Gss protein. Although homologous sequences are also present in various other bacteria, in contrast to Enterobacteria they are not present in all species of a given phyla. As previously reported homologous sequences were found in all five species of Kinetoplastids tested (including Trypansosma cruzi), but it is striking that comparable sequences are not found in a variety of invertebrate and vertebrate species, Archea and plants. Studies in E. coli show that the highest accumulation of glutathionylspermidine is found in stationary phase cultures where most of the intracellular spermidine is converted to glutathionylspermidine. However, even in log phase cells there is some formation of glutathionylspermidine, and isotope exchange experiments show that there is a rapid exchange between glutathionylspermidine and intracellular spermidine. We have not been able to define a specific physiologic function for glutathionylspermidine, but microarray studies comparing gss+ and -gss strains of E. coli show that a large number of genes are either upregulated or downregulated by the loss of the gss gene.

Publication Title

Escherichia coli glutathionylspermidine synthetase/amidase: phylogeny and effect on regulation of gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE33503
Gene expression profile of DAP12 knockdown THP-1 cells following exposure to phorbol 12-myristate 13-acetate
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Nasu-Hakola disease (NHD), also designated polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL), is a rare autosomal recessive disorder characterized by progressive presenile dementia and formation of multifocal bone cysts, caused by a loss-of-function mutation of DAP12 or TREM2. TREM2 and DAP12 constitute a receptor/adaptor complex expressed on osteoclasts, dendritic cells, macrophages, monocytes, and microglia. At present, the precise molecular mechanisms underlying development of leukoencephalopathy and bone cysts in NHD remain largely unknown. We established THP-1 human monocyte clones that stably express small interfering RNA (siRNA) targeting DAP12 for serving as a cellular model of NHD. Genome-wide transcriptome analysis identified a set of 22 genes consistently downregulated in DAP12 knockdown cells. They constituted the molecular network closely related to the network defined by cell-to-cell signaling and interaction, hematological system development and function, and inflammatory response, where NF-kappaB acts as a central regulator. These results suggest that a molecular defect of DAP12 in human monocytes deregulates the gene network pivotal for maintenance of myeloid cell function in NHD. We found that both DAP12 knockdown and control clones were capable of equally responding to phorbol 12-myristate 13-acetate (PMA), a known inducer of morphological differentiation of THP-1 cells, by exhibiting almost similar gene expression profiles between both, following a 24-hour exposure to 50 nM PMA.

Publication Title

Gene expression profile of THP-1 monocytes following knockdown of DAP12, a causative gene for Nasu-Hakola disease.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE33500
Gene expression profile of THP-1 monocytes following knockdown of DAP12, a causative gene for Nasu-Hakola disease
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Nasu-Hakola disease (NHD), also designated polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL), is a rare autosomal recessive disorder characterized by progressive presenile dementia and formation of multifocal bone cysts, caused by a loss-of-function mutation of DAP12 or TREM2. TREM2 and DAP12 constitute a receptor/adaptor complex expressed on osteoclasts, dendritic cells, macrophages, monocytes, and microglia. At present, the precise molecular mechanisms underlying development of leukoencephalopathy and bone cysts in NHD remain largely unknown. We established THP-1 human monocyte clones that stably express small interfering RNA (siRNA) targeting DAP12 for serving as a cellular model of NHD. Genome-wide transcriptome analysis identified a set of 22 genes consistently downregulated in DAP12 knockdown cells. They constituted the molecular network closely related to the network defined by cell-to-cell signaling and interaction, hematological system development and function, and inflammatory response, where NF-kappaB acts as a central regulator. These results suggest that a molecular defect of DAP12 in human monocytes deregulates the gene network pivotal for maintenance of myeloid cell function in NHD.

Publication Title

Gene expression profile of THP-1 monocytes following knockdown of DAP12, a causative gene for Nasu-Hakola disease.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE67119
Polyamines induce the glutamate decarboxylase acid response system by increasing the level of the 38 subunit (RpoS) of Escherichia coli RNA polymerase via gadE regulon
  • organism-icon Escherichia coli
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

To study the physiological roles of polyamines, we have carried out a global microarray analysis on the effect of adding polyamines to an Escherichia coli mutant that lacks polyamines because of deletions in the genes in the polyamine biosynthetic pathway. Previously, we have reported that the earliest response to the polyamine addition is the increased expression of the genes for the glutamate dependent acid resistance system (GDAR). We also presented preliminary evidence for the involvement of rpoS and gadE regulators. In the current study further confirmation of the regulatory roles of rpoS and gadE is shown by a comparison of genome-wide expression profiling data from a series of microarrays comparing the genes induced by polyamine addition to polyamine-free rpoS+/gadE+ cells with genes induced by polyamine addition to polyamine-free rpoS and gadE cells. The results indicate that most of the genes in the E. coli GDAR system that are induced by polyamines require rpoS and gadE. Our data also show that, gadE is the main regulator of GDAR and other acid-fitness-island genes. Both polyamines and rpoS are necessary for the expression of gadE genes from the three promoters of gadE (P1, P2 and P3). The most important effect of polyamine addition is the very rapid post-transcriptional increase in the level of RpoS sigma factor. Our current hypothesis is that polyamines increase the level of RpoS protein, and that this increased RpoS level is responsible for the stimulation of gadE expression, which in turn induces the GDAR system in E. coli.

Publication Title

Polyamines Stimulate the Level of the σ38 Subunit (RpoS) of Escherichia coli RNA Polymerase, Resulting in the Induction of the Glutamate Decarboxylase-dependent Acid Response System via the gadE Regulon.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE52064
DRM complex mutant lin-54 vs. H3K36 methyltransferase mutant mes-4 vs. lin-54; mes-4 double mutant vs. wild type C.elegans germline
  • organism-icon Caenorhabditis elegans
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Here we uncover antagonistic regulation of transcript levels in the germline of Caenorhabditis elegans hermaphrodites. The histone methyltransferase MES-4 marks genes expressed in the germline with methylated Lys36 on histone H3 (H3K36me) and promotes their transcription; MES-4 also represses genes normally expressed in somatic cells and genes on the X chromosomes. The DRM complex, which includes E2F/DP and Retinoblastoma homologs, affects germline gene expression and prevents excessive repression of X-chromosome genes. Using genome-scale analyses of germline tissue, we show that common germline-expressed genes are activated by MES-4 and repressed by DRM, and that MES-4 and DRM co-bind many germline-expressed genes. Reciprocally, MES-4 represses and DRM activates a set of autosomal soma-expressed genes and overall X-chromosome gene expression. Mutations in mes-4 or the DRM subunit lin-54 oppositely skew target transcript levels and cause sterility; a double mutant restores near wild-type transcript levels and germ cell development. Together, yin-yang regulation by MES-4 and DRM ensures transcript levels appropriate for germ cell function, elicits robust but not excessive dampening of X-chromosome-wide transcription, and may poise genes for future expression changes. Our study reveals that conserved transcriptional regulators implicated in development and cancer counteract each other to fine-tune transcript dosage.

Publication Title

Opposing activities of DRM and MES-4 tune gene expression and X-chromosome repression in Caenorhabditis elegans germ cells.

Sample Metadata Fields

Sex

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact