refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 558 results
Sort by

Filters

Technology

Platform

accession-icon GSE19954
Telmisartan Improves Insulin Resistance with Modulating Adipose Tissue Macrophage Polarization in High Fat-fed Mice
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Diet-induced obesity is reported to induce a phenotypic switch in adipose tissue macrophages from an antiinflammatory M2 state to a proinflammatory M1 state. Telmisartan, an angiotensin II type 1 receptor antagonist and a peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonist, reportedly has beneficial effects on insulin sensitivity. We studied the effects of telmisartan on the adipose tissue macrophage phenotype in high fat-fed mice. Telmisartan was administered for 5 weeks to high fat-fed C57BL/6 mice. Insulin sensitivity, macrophage infiltration, and the gene expressions of M1 and M2 markers in epididymal fat tissues were examined. Insulin- or a glucose-tolerance test showed that telmisartan treatment improved insulin resistance, decreasing the body weight gain, visceral fat weight and adipocyte size without affecting the amount of food intake. Telmisartan treatment reduced the number of CD11c-positive cells and crown-like structures. Telmisartan reduced the mRNA expressions of M1 macrophage markers, such as TNF-alpha and IL-6, and increased the expression of M2 markers, such as IL-10 and Mgl2. The reduction of M1 macrophage markers, as well as the increased gene expression of M2 markers especially IL-10, is a possible mechanism for the improvement of insulin sensitivity by telmisartan.

Publication Title

Telmisartan improves insulin resistance and modulates adipose tissue macrophage polarization in high-fat-fed mice.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE7218
Effect of IgG cytoplasmic tail on BCR-respose genes
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

IgG cytoplasmic tail interferes with the induction of antigen-response genes

Publication Title

Enhancement and suppression of signaling by the conserved tail of IgG memory-type B cell antigen receptors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12964
Auxin stimulates brassinosteroid biosynthesis in Arabidopsis roots
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

We found that auxin stimulates gene expression of DWF4, which encodes a rate-dertermining step in brassinosteroid biosynthesis pathways. This increased gene expressioin subsequently led to elevation of the biosynthetic flux in Arabidopsis roots.

Publication Title

Auxin stimulates DWARF4 expression and brassinosteroid biosynthesis in Arabidopsis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE22105
Discrete Roles of STAT4 and STAT6 Transcription Factors in Tuning Epigenetic Modifications and Transcription during Helper T Cell Differentiation
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Discrete roles of STAT4 and STAT6 transcription factors in tuning epigenetic modifications and transcription during T helper cell differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE26890
Gene expression profiles of human effector CD8+ T cell subsets
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Effector CD8+ T cells are believed to be terminally differentiated cells having cytotoxic activity and the ability to produce effector cytokines such as INF- and TNF-. We investigated the difference between CXCR1+ and CXCR1- subsets of human effector CD27-CD28-CD8+ T cells. Both subsets similarly expressed cytolytic molecules and exerted substantial cytolytic activity, whereas only the CXCR1- subset had IL-2 productivity and self-proliferative activity and was more resistant to cell death than the CXCR1+ subset. These differences were explained by the specific up-regulation of CAMK4, SPRY2, and IL-7R in the CXCR1- subset and that of pro-apoptotic DAPK1 in the CXCR1+ subset. The IL-2 producers were more frequently found in the IL-7R+ subset of the CXCR1- effector CD8+ T cells than in the IL-7R- subset. IL-7/IL-7R signaling promoted cell survival only in the CXCR1- subset. The present study has highlighted a novel subset of effector CD8+ T cells producing IL-2 and suggests the importance of this subset in the homeostasis of effector CD8+ T cells.

Publication Title

Functional heterogeneity of human effector CD8+ T cells.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE65350
Expression data from mouse embryo
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To understand the molecular mechanism by which regulate skeletal development, we attempted to identify transcription factors that were highly expressed in developing cartilage during the embryonic stage.

Publication Title

The transcription factor Foxc1 is necessary for Ihh-Gli2-regulated endochondral ossification.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE39384
The AtGenExpress: Basic hormone treatment of seedlings in Arabidopsis
  • organism-icon Arabidopsis thaliana
  • sample-icon 72 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Arabidopsis seedlings of the wild-type or hormone mutants were treated with plant hormones.

Publication Title

The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access.

Sample Metadata Fields

Treatment, Time

View Samples
accession-icon GSE39385
The AtGenExpress: hormone inhibitor or other chemical treatment of seedlings in Arabidopsis
  • organism-icon Arabidopsis thaliana
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Arabidopsis seedlings of the wild-type were treated with inhibitors.

Publication Title

The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access.

Sample Metadata Fields

Treatment, Time

View Samples
accession-icon GSE5696
AtGenExpress: Effect of brassinosteroids in seedlings
  • organism-icon Arabidopsis thaliana
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

AtGenExpress: A multinational coordinated effort to uncover the transcriptome of the multicellular model organism Arabidopsis thaliana

Publication Title

The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE5688
AtGenExpress: Response to sulfate limitation
  • organism-icon Arabidopsis thaliana
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

AtGenExpress: A multinational coordinated effort to uncover the transcriptome of the multicellular model organism Arabidopsis thaliana

Publication Title

The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact