refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 558 results
Sort by

Filters

Technology

Platform

accession-icon SRP144405
Single-cell DNA replication profiling identifies spatiotemporal developmental dynamics of chromosome organization [RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 34 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

In mammals, chromosomes are partitioned into megabase-sized topologically associating domains (TADs). TADs can be in either A (active) or B (inactive) subnuclear compartments, which correspond to early (E) and late (L) replicating timing (RT) domains, respectively. Here, we show that RT changes are tightly correlated with A/B compartment changes during mouse embryonic stem cell (mESC) differentiation. A/B compartments changed mostly by a “boundary shift,” frequently causing compartment switching of single TADs, which coincided with or preceded RT changes. Upon differentiation, mESCs acquired an A/B compartment organization that closely resembled EpiSCs (epiblast-derived stem cells), suggesting that accumulation of compartment boundary repositioning eventually led to naïve-to-primed pluripotency transition in A/B compartment organization. We propose that large-scale reorganization of A/B compartments, which is reflected in RT domain reorganization, represents major cell fate changes. Collectively, our data provides valuable insights into the regulatory principles of 3-dimensional (3D) genome organization during early embryonic stages. Overall design: RNA-Seq: 9 cell types, with a total of 34 individual replicates.

Publication Title

Single-cell DNA replication profiling identifies spatiotemporal developmental dynamics of chromosome organization.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE60652
Retinoblastoma protein promotes oxidative phosphorylation through upregulation of glycolytic genes in oncogene-induced senescent cells
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Metabolism is tightly coupled with the process of aging, and tumorigenesis. However, the mechanisms regulating metabolic properties in different contexts remain unclear. Cellular senescence is widely recognized as an important tumor suppressor function and accompanies metabolic remodeling characterized by increased mitochondrial oxidative phosphorylation (OXPHOS). Here we showed retinoblastoma (RB) is required for the increased OXPHOS in oncogene-induced senescent (OIS) cells. Combined metabolic and gene expression profiling revealed that RB mediated activation of the glycolytic pathway in OIS cells, causing upregulation of several glycolytic genes and concomitant increases in the levels of associated metabolites in the glycolytic pathway. Knockdown of these genes by small interfering RNAs (siRNAs) resulted in decreased mitochondrial respiration, suggesting that RB-mediated glycolytic gene activation promotes metabolic flux into the OXPHOS pathway. These results suggest that coordinate transcriptional activation of metabolic genes by RB enables OIS cells to maintain metabolically bivalent states that both glycolysis and OXPHOS are highly active. Collectively, our findings demonstrated a previously unrecognized function of RB in OIS cells.

Publication Title

Retinoblastoma protein promotes oxidative phosphorylation through upregulation of glycolytic genes in oncogene-induced senescent cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE86546
Transcriptome analysis of IMR-90 human fibroblasts following oncogene-induced and replicative senescence
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

By transcriptome analysis of IMR-90 human fibroblasts following oncogene-induced senescence (OIS) and replicative senescence (RS), we identified commonly regulated genes in both conditions.

Publication Title

The SETD8/PR-Set7 Methyltransferase Functions as a Barrier to Prevent Senescence-Associated Metabolic Remodeling.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE86545
Effect of SETD8/PR-Set7 knockdown on gene expression profiles in human fibroblasts
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Cellular senescence is an ireversible growth arrest with alterd metabolic potentials including DNA, RNA and protein dynamics. We found that loss of the SETD8/PR-Set7 methyltransferase, which catalyzes mono-methylation of histone H4 at lysine 20 (H4K20me1), induces senescence in human fibroblasts. To investigate the role of SETD8 in cellular senescence, we performed a microarray-based transcriptomic analysis in SETD8-knockdown cells. Our results demonstrate that SETD8 links the epigenomic gene regulation to senescence-associated metabolic remodeling.

Publication Title

The SETD8/PR-Set7 Methyltransferase Functions as a Barrier to Prevent Senescence-Associated Metabolic Remodeling.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP111925
Gene expression profile during wound-induced callus formation in Arabidopsis thaliana
  • organism-icon Arabidopsis thaliana
  • sample-icon 17 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Wounding is a primary trigger of organ regeneration but how wound stress reactivates cell proliferation and promotes cellular reprogramming remains elusive. In this study we combined the transcriptome analysis with quantitative hormonal analysis to investigate how wounding induces callus formation in Arabidopsis thaliana. Our time-course RNA-seq analysis revealed that wounding induces dynamic transcriptional changes that can be categorized into five clusters with distinct temporal patterns. Gene ontology analyses uncovered that wounding modifies the expression of hormone biosynthesis and response genes, and quantitative analysis of endogenous plant hormones revealed accumulation of cytokinin prior to callus formation. Mutants defective in cytokinin synthesis and signalling display reduced efficiency in callus formation, indicating that de novo synthesis of cytokinin has major contribution in wound-induced callus formation. We further demonstrate that type-A ARABIDOPSIS RESPONSE REGULATOR (ARR)-mediated cytokinin signalling regulates the expression of CYCLIN D3;1 (CYCD3;1) and mutations in CYCD3;1 and its homologs CYCD3;2-3 cause defects in callus formation. Our transcriptome data, in addition, showed that wounding activates multiple developmental regulators, and we found novel roles of ETHYLENE RESPONSE FACTOR 115 (ERF115) and PLETHORA3 (PLT3), PLT5, PLT7 in wound-induced callus formation. Together, this study provides novel mechanistic insights into how wounding reactivates cell proliferation during callus formation. Overall design: Examination of transcriptome at 0, 1, 3, 6, 12,24 h after wounding.

Publication Title

Wounding Triggers Callus Formation via Dynamic Hormonal and Transcriptional Changes.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon GSE56389
Development of the prethalamus is crucial for thalamocortical projection formationand is regulated by Olig2
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Thalamocortical axons pass through the prethalamus in the first step of their neural circuit formation Although it has been supposed that the prethalamus is an intermediate target for thalamocortical projection formation, much less is known about the molecular mechanisms of this targeting.

Publication Title

Development of the prethalamus is crucial for thalamocortical projection formation and is regulated by Olig2.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18778
Comparison of gene expression between wild-type and PTIP deficient chicken DT40 B cells
  • organism-icon Gallus gallus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

PTIP (Pax2 transactivation domain-interacting protein) is a nuclear protein containing six BRCT domains. It has been shown that PTIP affects gene expression by controlling the activity of the transcription factor Pax2 and histone H3 lysine 4 methyltransferase complexes. In addition to its role in transcriptional regulation, PTIP has been implicated in DNA damage response. To ask if the depletion of PTIP affects the expression level of genes encoding DNA damage response factors , we compared the whole transcripts between wild-type and PTIP deficient chicken DT40 B cell lines.

Publication Title

PTIP promotes DNA double-strand break repair through homologous recombination.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE61697
Gene expressions of CD4+ T cells in each developmental stages
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The development of T cells has been characterized as taking place over three stages: nave (Tn), central memory (Tcm), and effector memory (Tem) cells.

Publication Title

Polarization diversity of human CD4+ stem cell memory T cells.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon SRP186367
Loss of RNA-binding protein Sfpq causes long-gene transcriptopathy in skeletal muscle and severe muscle mass reduction with metabolic myopathy (skeletal muscle, mRNA-seq)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

Growing evidences are suggesting that extra-long genes in mammals are vulnerable for full-gene length transcription and dysregulation of long genes is a mechanism underlying human genetic disorders. Skeletal muscle expresses Dystrophin which is 2.26 Mbp in length; however, how long-distance transcription is achieved is totally unknown. We had discovered RNA-binding protein SFPQ preferentially binds to long pre-mRNAs and specifically regulates the cluster of neuronal genes > 100 kbp. Here we investigated the roles of SFPQ for long gene expression, target specificities, and also physiological functions in skeletal muscle. Loss of Sfpq selectively downregulated genes >100 kbp including Dystrophin and caused progressive muscle mass reduction and metabolic myopathy characterized by glycogen accumulation and decreased abundance of mitochondrial oxidative phosphorylation complexes. Functional clustering analysis identified metabolic pathway related genes as the targets of SFPQ. These findings indicate target gene specificities and tissue-specific physiological functions of SFPQ in skeletal muscle. Overall design: We analyzed polyA-tailed RNA profiles including transcribing RNAs in gastrocnemius skeletal muscle ( from 3 control and 3 Sfpq-/- P35 male mice) using Ion-proton.

Publication Title

Loss of RNA-Binding Protein Sfpq Causes Long-Gene Transcriptopathy in Skeletal Muscle and Severe Muscle Mass Reduction with Metabolic Myopathy.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon SRP124852
Loss of RNA-binding protein Sfpq causes long-gene transcriptopathy in skeletal muscle and severe muscle mass reduction with metabolic myopathy (Primary culture, rRNA depleted RNA-seq)
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

Growing evidences are suggesting that extra-long genes in mammals are vulnerable for full-gene length transcription and dysregulation of long genes is a mechanism underlying human genetic disorders. Skeletal muscle expresses Dystrophin which is 2.26 Mbp in length; however, how long-distance transcription is achieved is totally unknown. We had discovered RNA-binding protein SFPQ preferentially binds to long pre-mRNAs and specifically regulates the cluster of neuronal genes > 100 kbp. Here we investigated the roles of SFPQ for long gene expression, target specificities, and also physiological functions in skeletal muscle. Loss of Sfpq selectively downregulated genes >100 kbp including Dystrophin and caused progressive muscle mass reduction and metabolic myopathy characterized by glycogen accumulation and decreased abundance of mitochondrial oxidative phosphorylation complexes. Functional clustering analysis identified metabolic pathway related genes as the targets of SFPQ. These findings indicate target gene specificities and tissue-specific physiological functions of SFPQ in skeletal muscle. Overall design: We analyzed rRNA-depleted RNA profiles including transcribing RNAs in primary myoblasts obtained from skeletal muscles of 1-month-old SfpqSM-KO (n=1) and control (n=1) mice under differentiated condition using Ion-proton.

Publication Title

Loss of RNA-Binding Protein Sfpq Causes Long-Gene Transcriptopathy in Skeletal Muscle and Severe Muscle Mass Reduction with Metabolic Myopathy.

Sample Metadata Fields

Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact