refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 558 results
Sort by

Filters

Technology

Platform

accession-icon GSE28091
Expression profiles of mouse glioma-initiating cells.
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To identify factors involved in glioma-initiating cells (GICs), we compared gene expressions between GIC-like cells and non-GICs.

Publication Title

Combination of a ptgs2 inhibitor and an epidermal growth factor receptor-signaling inhibitor prevents tumorigenesis of oligodendrocyte lineage-derived glioma-initiating cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17062
Expression profiling of mouse glioma-initiating cell-like cells (GICs) and non-GICs
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To identify factors involved in glioma-initiating cells (GICs), we compared gene expression between GIC-like cells and non-GICs.

Publication Title

Sox11 prevents tumorigenesis of glioma-initiating cells by inducing neuronal differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17076
Expression profiling of sox11-expressing glioma-initiating cell-like cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To identify factors involved in tumorigenicity of glioma-initiating cells (GICs), we compared gene expression in GIC-like cells with and without sox11 expression.

Publication Title

Sox11 prevents tumorigenesis of glioma-initiating cells by inducing neuronal differentiation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE18778
Comparison of gene expression between wild-type and PTIP deficient chicken DT40 B cells
  • organism-icon Gallus gallus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

PTIP (Pax2 transactivation domain-interacting protein) is a nuclear protein containing six BRCT domains. It has been shown that PTIP affects gene expression by controlling the activity of the transcription factor Pax2 and histone H3 lysine 4 methyltransferase complexes. In addition to its role in transcriptional regulation, PTIP has been implicated in DNA damage response. To ask if the depletion of PTIP affects the expression level of genes encoding DNA damage response factors , we compared the whole transcripts between wild-type and PTIP deficient chicken DT40 B cell lines.

Publication Title

PTIP promotes DNA double-strand break repair through homologous recombination.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE43762
Expression profiling of glioma initiating cells (GICs) in the sphere and differentiation conditions
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Glioma initiating cells (GICs) are considered responsible for the therapeutic resistance and recurrence of malignant glioma. To clarify the molecular mechanism of GIC maintenance/differentiation, we established GIC clones from GBM patient tumors having the potential to differentiate into malignant gliomas in mouse intracranial xenograft, and established an in vitro glioma induction system by using serum stimulation.

Publication Title

Glioma initiating cells form a differentiation niche via the induction of extracellular matrices and integrin αV.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE61697
Gene expressions of CD4+ T cells in each developmental stages
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The development of T cells has been characterized as taking place over three stages: nave (Tn), central memory (Tcm), and effector memory (Tem) cells.

Publication Title

Polarization diversity of human CD4+ stem cell memory T cells.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon SRP186367
Loss of RNA-binding protein Sfpq causes long-gene transcriptopathy in skeletal muscle and severe muscle mass reduction with metabolic myopathy (skeletal muscle, mRNA-seq)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

Growing evidences are suggesting that extra-long genes in mammals are vulnerable for full-gene length transcription and dysregulation of long genes is a mechanism underlying human genetic disorders. Skeletal muscle expresses Dystrophin which is 2.26 Mbp in length; however, how long-distance transcription is achieved is totally unknown. We had discovered RNA-binding protein SFPQ preferentially binds to long pre-mRNAs and specifically regulates the cluster of neuronal genes > 100 kbp. Here we investigated the roles of SFPQ for long gene expression, target specificities, and also physiological functions in skeletal muscle. Loss of Sfpq selectively downregulated genes >100 kbp including Dystrophin and caused progressive muscle mass reduction and metabolic myopathy characterized by glycogen accumulation and decreased abundance of mitochondrial oxidative phosphorylation complexes. Functional clustering analysis identified metabolic pathway related genes as the targets of SFPQ. These findings indicate target gene specificities and tissue-specific physiological functions of SFPQ in skeletal muscle. Overall design: We analyzed polyA-tailed RNA profiles including transcribing RNAs in gastrocnemius skeletal muscle ( from 3 control and 3 Sfpq-/- P35 male mice) using Ion-proton.

Publication Title

Loss of RNA-Binding Protein Sfpq Causes Long-Gene Transcriptopathy in Skeletal Muscle and Severe Muscle Mass Reduction with Metabolic Myopathy.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon SRP124852
Loss of RNA-binding protein Sfpq causes long-gene transcriptopathy in skeletal muscle and severe muscle mass reduction with metabolic myopathy (Primary culture, rRNA depleted RNA-seq)
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

Growing evidences are suggesting that extra-long genes in mammals are vulnerable for full-gene length transcription and dysregulation of long genes is a mechanism underlying human genetic disorders. Skeletal muscle expresses Dystrophin which is 2.26 Mbp in length; however, how long-distance transcription is achieved is totally unknown. We had discovered RNA-binding protein SFPQ preferentially binds to long pre-mRNAs and specifically regulates the cluster of neuronal genes > 100 kbp. Here we investigated the roles of SFPQ for long gene expression, target specificities, and also physiological functions in skeletal muscle. Loss of Sfpq selectively downregulated genes >100 kbp including Dystrophin and caused progressive muscle mass reduction and metabolic myopathy characterized by glycogen accumulation and decreased abundance of mitochondrial oxidative phosphorylation complexes. Functional clustering analysis identified metabolic pathway related genes as the targets of SFPQ. These findings indicate target gene specificities and tissue-specific physiological functions of SFPQ in skeletal muscle. Overall design: We analyzed rRNA-depleted RNA profiles including transcribing RNAs in primary myoblasts obtained from skeletal muscles of 1-month-old SfpqSM-KO (n=1) and control (n=1) mice under differentiated condition using Ion-proton.

Publication Title

Loss of RNA-Binding Protein Sfpq Causes Long-Gene Transcriptopathy in Skeletal Muscle and Severe Muscle Mass Reduction with Metabolic Myopathy.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE70511
Aggressive gene expression signiture of waldenstrom macroglobulinemia with deletion 6q
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Waldenstom macroglobulinemia (WM) with 6q del is still unknown. In the present study, we analyzed gene expression signiture of WM with 6q del.

Publication Title

Gene Expression Profile Signature of Aggressive Waldenström Macroglobulinemia with Chromosome 6q Deletion.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon SRP158491
Gene expressions of T cells in each developmental stages in healthy volunteers and patients with rheumatoid arthritis
  • organism-icon Homo sapiens
  • sample-icon 276 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

We collected and compared samples from the cohort consisted of six groups as follows: methotrexate (MTX) monotherapy, combination therapy of MTX and infliximab (IFX), tocilizumab (TCZ) monotherapy, age- and gender-matched HC, and a small number of synovial fluid samples. In order to reduce variation due to the proportion of cells at each developmental stage, we performed transcriptome analysis after sorting CD4+ and CD8+ T cells according to developmental stage. We created a gene list that was significantly expressed in RA T cells, and revealed that pathways such as mTORC1, IL-2-stat5, Cell cycle and interferon-related genes were significantly enriched among them. Overall design: Examination among healthy controls and patients with rheumatoid arthritis, including before and after treatment

Publication Title

Multi-dimensional analysis identified rheumatoid arthritis-driving pathway in human T cell.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact