refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 61 results
Sort by

Filters

Technology

Platform

accession-icon GSE32494
Targeting the hemangioblast with a novel cell type-specific enhancer
  • organism-icon Gallus gallus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

Hemangioblasts are known as the common precursors for primitive hematopoietic and endothelial lineages. Their existence has been supported mainly by the observation that both cell types develop in close proximity and by in vitro differentiation and genetic studies. However, more compelling evidence will arise from tracking their cell fates using a lineage-specific marker. We report the identification of a hemangioblast-specific enhancer (Hb) located in the cis-regulatory region of chick Cerberus gene (cCer) that is able to direct the expression of enhanced green fluorescent protein (eGFP) to the precursors of yolk sac blood and endothelial cells in electroporated chick embryos. Moreover, we present the Hb-eGFP reporter as a powerful live imaging tool for visualizing hemangioblast cell fate and blood island morphogenesis. We hereby introduce the Hb enhancer as a valuable resource for genetically targeting the hemangioblast population as well as for studying the dynamics of vascular and blood cell development.

Publication Title

Targeting the hemangioblast with a novel cell type-specific enhancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE78080
Expression data from bam and setdb1 mutant ovaries
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Germline stem cell self-renewal and differentiation are required for sustained production of gamates. GSC differentiation in drosophila requires expression of setdb1 by the somatic niche, however its function is not known.

Publication Title

Transposon Dysregulation Modulates dWnt4 Signaling to Control Germline Stem Cell Differentiation in Drosophila.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE100846
Blood-brain barrier transport and neuroprotective potential of blackberry-digested polyphenols: an in vitro study
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Purpose: Epidemiological and intervention studies have attempted to link the health effects of a diet rich in fruits and vegetables with the consumption of polyphenols and their impact in neurodegenerative diseases. Studies have shown that polyphenols can cross the intestinal barrier and reach concentrations in the bloodstream able to exert effects in vivo. However, the effective uptake of polyphenols in the brain is still regarded with some reservations. Here we describe a combination of approaches to examine the putative transport of blackberry-digested polyphenols (BDP) across the blood-brain barrier (BBB) and ultimate evaluation of their beneficial effects.

Publication Title

Blood-brain barrier transport and neuroprotective potential of blackberry-digested polyphenols: an in vitro study.

Sample Metadata Fields

Sex, Specimen part, Cell line, Race

View Samples
accession-icon SRP092004
Suppression of adaptive responses to targeted cancer therapy by transcriptional repression [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 87 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Large-scale genomic profiling efforts have facilitated the characterization of molecular alterations in cancers and aided the development of targeted kinase inhibitors for a wide array of cancer types. However, resistance to these targeted therapies invariably develops and limits their clinical efficacy. Targeting tumours with kinase inhibitors induces complex adaptive survival programs that promote the persistence of a fraction of the original cancer cell population, facilitating the eventual outgrowth of inhibitor-resistant tumour clones following clonal evolution. Here we show that the addition of a newly identified transcriptional repressor, THZ1, to targeted cancer therapy enhances cell killing and impedes the emergence of drug-resistant cell populations in cellular and in vivo cancer models with diverse genetic dependencies. We propose that targeted therapy induces a state of transcriptional dependency in a subpopulation of cells poised to become drug tolerant. THZ1 can exploit this dependency by blocking dynamic transcriptional responses, remodelling of enhancers and key signalling outputs required for tumour cell survival in the setting of targeted cancer therapies. These findings suggest that the addition of THZ1 to targeted cancer therapies is a promising broad-based strategy to hinder the emergence of drug-resistant cancer cell populations. Overall design: RNA-seq in tumor cell lines treated with targeted therapies and/or transcriptional inhibitors

Publication Title

Suppression of Adaptive Responses to Targeted Cancer Therapy by Transcriptional Repression.

Sample Metadata Fields

Specimen part, Cell line, Subject, Compound

View Samples
accession-icon GSE16050
The microRNA miR-124 controls gene expression in the sensory nervous system of Caenorhabditis elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

We generated animals carrying a genomically integrated mir-124 promoter::gfp transgene and identified mir-124 promoter::GFP labelled cells as a subset of the C. elegans sensory neurons. We used fluorescence activated cell sorting (FACS) to isolate four distinct cell populations: mir-124 expressing (GFP+) and non-expressing (GFP-) cells from both wild-type and mutant animals. RNA samples obtained from the four cell populations were used for Affymetrix gene expression analysis to study the effect of mir-124 deletion on the transcriptome of mir-124 expressing (GFP+) and non-expressing (GFP-) cells.

Publication Title

The microRNA miR-124 controls gene expression in the sensory nervous system of Caenorhabditis elegans.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE11769
Analysis of ectopic human endometrium and peritoneal tissues in nude mice
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Endometrial-peritoneal interactions during endometriotic lesion establishment.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11768
Nude mouse model of endometriosis
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

The pathophysiology of endometriotic lesion development remains unclear but involves a complex interaction between ectopic endometrium and host peritoneal tissues. We hypothesised that disruption of this interaction was likely to suppress endometriotic lesion formation. We hoped to delineate the molecular and cellular dialogue between ectopic human endometrium and peritoneal tissues in nude mice, as a first step towards testing this hypothesis. Human endometrium was xenografted into nude mice and the resulting lesions were analysed using microarrays. A novel technique was developed that unambiguously determined whether RNA transcripts identified by the microarray analyses originated from human cells (endometrium) or mouse cells (stroma). Four key pathways (ubiquitin/proteosome, inflammation, tissue remodelling/repair and ras-mediated oncogenesis) were revealed, that demonstrated communication between host stromal cells and ectopic endometrium.

Publication Title

Endometrial-peritoneal interactions during endometriotic lesion establishment.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11691
Euctopic and ectopic human endometrium (endometriosis)
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

The pathophysiology of endometriotic lesion development remains unclear but involves a complex interaction between ectopic endometrium and host peritoneal tissues. We hypothesised that disruption of this interaction was likely to suppress endometriotic lesion formation. We hoped to delineate the molecular and cellular dialogue between ectopic human endometrium and peritoneal tissues in nude mice, as a first step towards testing this hypothesis. Human endometrium was xenografted into nude mice and the resulting lesions were analysed using microarrays. A novel technique was developed that unambiguously determined whether RNA transcripts identified by the microarray analyses originated from human cells (endometrium) or mouse cells (stroma). Four key pathways (ubiquitin/proteosome, inflammation, tissue remodelling/repair and ras-mediated oncogenesis) were revealed, that demonstrated communication between host stromal cells and ectopic endometrium.

Publication Title

Endometrial-peritoneal interactions during endometriotic lesion establishment.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon E-MEXP-1131
Transcription profiling of E2F4 double knockout mice and heterozygous littermates
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

We considered the possibility that removal of E2F4, as a key regulator of cellular quiescence, would cause systemic perturbations in the expression of E2F4 bound genes involved in cell cycle and proliferation. To test whether these pertubrations were reflected in the adult tissues' gene expression programs, we compared the gene expression profile of E2F4 double knockout mice to the gene expression found in identical tissues from E2F4 heterozygous littermates, that are phenotypically normal. We selected liver, testes, and kidney to profile by gene expression analysis, because two of these tissues are affected at some point during development when E2F4 is missing.

Publication Title

Cell cycle genes are the evolutionarily conserved targets of the E2F4 transcription factor.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon SRP028570
Differential transcript stability measurements in MDA-MB-231 vs. MDA-LM2 cells
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We performed whole-genome stability measurements for MDA-MB-231 and its highly metastatic derivative MDA-LM2. Our goal was to identify post-transcriptonal regulons that are deregulated en route to higher metastatic capacity. Overall design: Cells were pulsed with 4-thiouridine for 2 hours and then RNA was extracted at 0, 2, 4, and 7 hr time-points in quadruplicate from each cell line. 4sU labeling followed by RNA-seq was then used to measure the abundance of transcripts in each population. A decay rate was estimated based on the rate at which transcript abundance was reduced at these time-points.

Publication Title

Metastasis-suppressor transcript destabilization through TARBP2 binding of mRNA hairpins.

Sample Metadata Fields

Cell line, Subject, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact