refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 31 results
Sort by

Filters

Technology

Platform

accession-icon SRP100153
The cohesin release factor WAPL restricts chromatin loop extension. [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The spatial organization of chromosomes influences many nuclear processes including gene expression. The cohesin complex shapes the 3D genome by looping together CTCF sites along chromosomes. We show here that chromatin loop size can be increased, and that the duration with which cohesin embraces DNA determines the degree to which loops are enlarged. Cohesin's DNA release factor WAPL restricts the degree of this loop extension and also prevents looping between incorrectly oriented CTCF sites. We reveal that the SCC2/SCC4 complex promotes the extension of chromatin loops and the formation of topologically associated domains (TADs). Our data support the model that cohesin structures chromosomes through the processive enlargement of loops and that TADs reflect polyclonal collections of loops in the making. Finally, we find that whereas cohesin promotes chromosomal looping, it rather limits nuclear compartmentalization. We conclude that the balanced activity of SCC2/SCC4 and WAPL enables cohesin to correctly structure chromosomes. Overall design: RNAseq was performed in control, ?WAPL 3.3, ?WAPL 1.14, ?SCC4 and ?WAPL/?SCC4 cells in triplicate.

Publication Title

The Cohesin Release Factor WAPL Restricts Chromatin Loop Extension.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE51707
Sex-specific control of CNS autoimmunity by p38 MAPK signaling in myeloid cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Objective: Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS), characterized by a global increasing incidence driven by relapsing-remitting disease in females. p38 MAP kinase (MAPK) has been described as a key regulator of inflammatory responses in autoimmunity, but its role in the sexual dimorphism in MS or MS models remains unexplored. Methods: Toward this end, we used experimental autoimmune encephalomyelitis (EAE), the principal animal model of MS, combined with pharmacologic and genetic inhibition of p38 MAPK activity and transcriptomic analyses. Results: Pharmacologic inhibition of p38 MAPK selectively ameliorated EAE in female mice. Conditional deletion studies demonstrated that p38 signaling in macrophages/myeloid cells, but not T cells or dendritic cells, recapitulated this sexual dimorphism. Analysis of CNS inflammatory infiltrates showed that female, but not male mice lacking p38 in myeloid cells exhibited reduced immune cell activation compared with controls, while peripheral T cell priming was unaffected in both sexes. Transcriptomic analyses of myeloid cells revealed differences in p38-controlled transcripts comprising female- and male-specific gene modules, with greater p38 dependence of pro-inflammatory gene expression in females. Interpretation: Our findings demonstrate a key role for p38 in myeloid cells in CNS autoimmunity and uncover important molecular mechanisms underlying sex differences in disease pathogenesis. Taken together, our results suggest that the p38 MAPK signaling pathway represents a novel target for much needed disease modifying therapies for MS

Publication Title

Sex-specific control of central nervous system autoimmunity by p38 mitogen-activated protein kinase signaling in myeloid cells.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon E-MEXP-122
Transcription profiling of leukemic cells of monozygotic twins
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

We established gene expression profiles of diagnostic bone marrow samples of monozygotic twins with acute lymphoblastic leukemia. We established technical duplicates for each twin.

Publication Title

Prenatal origin of separate evolution of leukemia in identical twins.

Sample Metadata Fields

Sex, Specimen part, Disease, Disease stage

View Samples
accession-icon SRP115581
Gene expression profiling during active Lyme arthritis development (22 days post infection with B. burgdorferi) in CD45 negative cells isolated from joint tissue of highly genetically similar mouse strains: B6, ISRCL4, and ISRCL3
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Previously, using a forward genetic approach we identified B. burgdorferi arthritis-associated locus 1 (Bbaa1), a quantitative trait locus on Chr4, which physically encompasses the type I IFN gene cluster and regulates Lyme arthritis through heightened type I IFN production. Reciprocal radiation chimeras between B6.C3-Bbaa1 and B6 mice revealed that arthritis is initiated by radiation-sensitive cells, but orchestrated by radiation-resistant components of joint tissue. Advanced congenic lines were developed to reduce the physical size of the Bbaa1 interval, and RNA-seq of resident CD45- joint cells from advanced interval specific recombinant congenic lines (ISRCL4 and ISRCL3) identified myostatin as uniquely upregulated in association with Bbaa1 arthritis development. Our manuscript further demonstrates that myostatin expression is linked to IFN-ß production, and in vivo inhibition of myostatin suppresses Lyme arthritis in the reduced interval Bbaa1 congenic mice, formally implicating myostatin as a novel downstream mediator of joint-specific inflammatory response to B. burgdorferi. Overall design: 22 days following infection with B. burgdorferi, mouse rear ankle joints were gently digested into single-cell suspensions and CD45 negative cells were isolated by magnetic bead separation. CD45 negative cells from both rear ankle joints of two mice were pooled for each n sample in order to increase RNA concentration for gene expression analysis (n=5 per genotype). Gene expression comparisons were made between B6 (control group) and ISRCL4/ISRCL3 congenic lines.

Publication Title

Genetic Control of Lyme Arthritis by <i>Borrelia burgdorferi</i> Arthritis-Associated Locus 1 Is Dependent on Localized Differential Production of IFN-β and Requires Upregulation of Myostatin.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE65048
Copy number variation in Y chromosome multicopy genes is linked to a paternal parent-of-origin effect on CNS autoimmune disease in female offspring
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Copy number variation in Y chromosome multicopy genes is linked to a paternal parent-of-origin effect on CNS autoimmune disease in female offspring.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE5348
Specific changes of liver transcriptome in the early stages of copper accumulation in the mouse model of wilson disease
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Wilson disease (WD) is a severe metabolic disorder caused by genetic inactivation of copper-transporting ATPase ATP7B. In WD, copper accumulates in several tissues, particularly in the liver, inducing marked time-dependent pathological changes. To identify initial events in the copper-dependent development of liver pathology we utilized the Atp7b-/- mice, an animal model for WD. Analysis of mRNA from livers of control and Atp7b-/- 6 weeks-old mice using oligonucleotide arrays revealed specific changes of the transcriptome at this stage of copper accumulation. Few messages (29 up-regulated and 46 down-regulated) change their abundance more than 2-fold pointing to the specific effect of copper on gene expression/mRNA stability. The gene ontology analysis revealed copper effects on distinct metabolic pathways.

Publication Title

High copper selectively alters lipid metabolism and cell cycle machinery in the mouse model of Wilson disease.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE65038
Lymph node CD4+ T cell expression data from nave female offspring of C57BL/6J and C57BL/6J-ChrY^SJL
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The prevalence of some autoimmune diseases (AID) is greater in females compared with males, notwithstanding that disease severity is often greater in males. The reason for this sexual dimorphism (SD) is unknown, but may reflect negative selection of Y chromosome (ChrY) bearing sperm during spermatogenesis or male fetuses early in the course of conception/pregnancy. Previously, we showed that the SD in experimental autoimmune encephalomyelitis (EAE) is associated with copy number variation (CNV) in ChrY multicopy genes. Here, we test the hypothesis that CNV in ChrY multicopy genes influences the paternal parent-of-origin effect on EAE susceptibility in female mice. We show that C57BL/6J consomic strains of mice possessing an identical ChrX and CNV in ChrY multicopy genes exhibit a female biased sex-ratio and sperm head abnormalities, consistent with X-Y intragenomic conflict arising from an imbalance in CNV between homologous ChrX:ChrY multicopy genes. These males also display paternal transmission of EAE to female offspring and differential loading of miRNAs within the sperm nucleus. These findings provide evidence for a genetic mechanism at the level of the male gamete that contributes to the SD in EAE and paternal parent-of-origin effects in female mice, raising the possibility that a similar mechanism may contribute to the SD in MS.

Publication Title

Copy number variation in Y chromosome multicopy genes is linked to a paternal parent-of-origin effect on CNS autoimmune disease in female offspring.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP090989
Altered hepatic lipid metabolism in mice lacking both the melanocortin type 4 receptor and low density lipoprotein receptor
  • organism-icon Mus musculus
  • sample-icon 83 Downloadable Samples
  • Technology Badge IconIllumina HiScanSQ

Description

In this study we investigated the effect of normal chow (0 % cholesterol) or a semisynthetic diet (high sugar, 0.02 % cholesterol) fed to mice lacking either Mc4r, Ldlr or both and wildtype animals (total of 4 genotypes) by generating an expression profile of their livers after 6 months by RNA sequencing. Overall design: We investigated mice lacking either Mc4r, Ldlr or both and wildtype animals fed with normal chow or a semisynthetic diet with 10 replicates for each of the 8 resulting groups (4 genotypes * 2 diets).

Publication Title

Severe Atherosclerosis and Hypercholesterolemia in Mice Lacking Both the Melanocortin Type 4 Receptor and Low Density Lipoprotein Receptor.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE47440
The Y chromosome as a regulatory element shaping immune cell transcriptomes and susceptibility to autoimmune disease
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The Y chromosome as a regulatory element shaping immune cell transcriptomes and susceptibility to autoimmune disease.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE47437
Lymph node CD4+ T cell and thioglycollate-elicited peritoneal macrophage expression data from nave young and old SJL/J and SJL-ChrY^B10.S male mice
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Understanding the DNA elements that constitute and control the regulatory genome is critical for the appropriate therapeutic management of complex diseases. Here, using chromosome Y (ChrY) consomic mouse strains on the C57BL/6J background, we show that susceptibility to two diverse animal models of autoimmune disease, including experimental allergic encephalomyelitis (EAE) and experimental myocarditis, correlates with the natural variation in copy number of Sly and Rbmy multicopy ChrY genes. In the B6 background, ChrY possesses gene regulatory properties that impact both genome-wide gene expression and the presence of alternative splice variants in pathogenic CD4+ T cells. Using a ChrY consomic strain on the SJL background, we discovered a preference for ChrY-mediated gene regulation in macrophages, the immune cell subset underlying the EAE sexual dimorphism in SJL mice, rather than CD4+ T cells. Importantly, in both genetic backgrounds, an inverse correlation exists between the number of Sly and Rbmy ChrY gene copies and the number of significantly upregulated genes in immune cells, thereby supporting a link between copy number variation of Sly and Rbmy with the ChrY genetic element exerting regulatory properties. Moreover, in humans, an analysis of the CD4+ T cell transcriptome from male multiple sclerosis patients versus healthy controls provides further evidence for an evolutionarily conserved mechanism of gene regulation by ChrY. Thus, these data establish ChrY as a member of the regulatory genome in mammals due to its ability to regulate gene expression and alternative splicing in immune cells linked to disease.

Publication Title

The Y chromosome as a regulatory element shaping immune cell transcriptomes and susceptibility to autoimmune disease.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact