refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1062 results
Sort by

Filters

Technology

Platform

accession-icon GSE11199
Identification of Tuberculosis Susceptibility Genes with Human Macrophage Gene Expression Profiles
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Although host genetics influences susceptibility to tuberculosis, few genes determining disease outcome have been identified. We hypothesized that macrophages from individuals with different clinical manifestations of tuberculosis infection would have distinct gene expression profiles, and that polymorphisms in these genes may also be associated with susceptibility to TB.

Publication Title

Identification of tuberculosis susceptibility genes with human macrophage gene expression profiles.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP198641
The X-linked DDX3X RNA helicase dictates translation re-programming and metastasis in melanoma
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The X-linked DDX3X gene encodes an ATP-dependent DEAD-box RNA helicase frequently altered in various human cancers including melanomas. Despite its important roles in translation and splicing, how DDX3X dysfunction specifically rewires gene expression in melanoma remains completely unknown. Here we uncover a DDX3X-driven post-transcriptional program that dictates melanoma phenotype and poor disease prognosis. Through an unbiased analysis of translating ribosomes we identified the microphtalmia-associated transcription factor, MITF, as a key DDX3X translational target that directs a proliferative-to-metastatic phenotypic switch in melanoma cells. Mechanistically, DDX3X controls MITF mRNA translation via an internal ribosome entry site (IRES) embedded within the 5' untranslated region. Through this exquisite translation-based regulatory mechanism, DDX3X steers MITF protein levels dictating melanoma metastatic potential in vivo and response to targeted therapy. Together these findings unravel a post-transcriptional layer of gene regulation that may provide a unique therapeutic vulnerability in aggressive male melanomas. Overall design: We sequenced transcripts associated with translationally active ribosomes (polysomes) isolated by sucrose gradient fractionation from DDX3X and control siRNA-transduced HT144 cells. Experiments were performed in duplicates.

Publication Title

The X-Linked DDX3X RNA Helicase Dictates Translation Reprogramming and Metastasis in Melanoma.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE11113
Expression profiling of a high-fertility mouse line by microarray analysis and qPCR.
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

The objective of the present study was to identify genes that are involved in increasing the ovulation number in mouse line FL1 that had been selected for high fertility performance.

Publication Title

Expression profiling of a high-fertility mouse line by microarray analysis and qPCR.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11697
Young and aged rhesus hippocampal CA1 and DG
  • organism-icon Macaca mulatta
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Rhesus Macaque Genome Array (rhesus)

Description

Metabolic, mitochondrial and behavioral correlations with transcriptional profiles from the CA1 and DG hippocampal regions of young and aged rhesus macaque. Increasing evidence indicates that obesity correlates with impaired cognitive performance during normal aging and is a major risk factor for Alzheimers disease. However, little is known regarding how peripheral metabolic variables affect cellular pathways in brain regions important for memory. Brain inflammation, mitochondrial dysregulation, and altered transcriptional regulation have all been found to occur with aging, and recent microarray analyses in rodent models have linked these processes and others to age-related memory impairment. However, whether these brain changes are also associated with metabolic variables is not known. Aging monkeys exhibit several metabolic changes similar to those seen in humans. Here, we tested peripheral-brain relationships in six young (7.0 +/- 0.3 years) and six aged (23.5 +/- 0.7 years) female rhesus monkeys. Animal cognition was gauged with a variable delay task; blood constituents were assessed with a serum chemistry panel emphasizing markers of metabolic dysfunction; mitochondrial function was measured from the hippocampus of one hemisphere; and the CA1 and dentate gyrus regions of the other hippocampus were dissected out for gene expression microarray analysis. Aged animals showed reduced performance on the behavioral task, exhibited aspects of metabolic dysregulation including increased insulin, triglyceride, and chylomicron levels (consolidated into a peripheral metabolic index), and showed a significant age-related reduction in State III oxidation, a measure of mitochondrial function. Microarray analyses revealed hundreds of genes that correlated with the peripheral metabolic index. However, DAVID statistical pathway analyses showed that upregulated inflammatory genes in CA1 and downregulated transcriptional regulation genes in dentate gyrus and CA1 were particularly overrepresented among genes correlated with the peripheral index. Thus, the association of metabolic variables with specific neuropathological processes in different regions of the hippocampal formation may have implications for mechanisms through which peripheral metabolism alters the risk for Alzheimers disease.

Publication Title

Aging-related gene expression in hippocampus proper compared with dentate gyrus is selectively associated with metabolic syndrome variables in rhesus monkeys.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE39145
Multiple DNA repair pathways collectively protect against DNA damage-induced replicative aging.
  • organism-icon Caenorhabditis elegans
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

We demonstrate that transcriptomic profiling of the NER mutant ercc-1 offers better understanding of the complex phenotypes of ercc-1 deficiency in C. elegans, as it does in mammalian models. There is a transcriptomic shift in ercc-1 mutants that suggests a stochastic impairment of growth and development, with a shift towards a higher proportion of males in the population. Extensive phenotypic analyses confirm that NER deficiency in C. elegans leads to severe developmental and growth defects and a reduced replicative lifespan, although post-mitotic lifespan is not affected. Results suggest that these defects are caused by an inability to cope with randomly occurring DNA damage, which may interfere with transcription and replication.

Publication Title

DNA damage leads to progressive replicative decline but extends the life span of long-lived mutant animals.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE41470
Expansion of multipotent stem cells from the adult human brain
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIllumina HumanWG-6 v3.0 expression beadchip, Illumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Expansion of multipotent stem cells from the adult human brain.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE41467
Adult human brain stem cells 3
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip, Illumina HumanWG-6 v3.0 expression beadchip

Description

Tissue repair using cell transplantation holds popular appeal. This underlines the need to understand stem cells within the target organ. Our laboratory works on the human brain. Using neurosphere methods, we and others have only been able to passage stem/progenitors a very few times with little expansion of numbers. Now we describe an efficient method for the establishment and propagation of human brain stem cells from whatever tissue samples we have tried. We describe virtually unlimited expansion of an authentic stem cell phenotype. Pluripotency markers Sox2 and Oct4 are expressed without artificial induction. For the first time, multipotency of adult human brain-derived stem cells is demonstrated beyond tissue boundaries. We characterize these cells in detail in vitro including microarray and proteomic approaches. Whilst clarification of these cells' behavior is ongoing, results so far portend well for the future repair of tissues by transplantation of an adult patient's own-derived stem cells.

Publication Title

Expansion of multipotent stem cells from the adult human brain.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE41468
Adult human brain stem cells 4
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip, Illumina HumanWG-6 v3.0 expression beadchip

Description

Tissue repair using cell transplantation holds popular appeal. This underlines the need to understand stem cells within the target organ. Our laboratory works on the human brain. Using neurosphere methods, we and others have only been able to passage stem/progenitors a very few times with little expansion of numbers. Now we describe an efficient method for the establishment and propagation of human brain stem cells from whatever tissue samples we have tried. We describe virtually unlimited expansion of an authentic stem cell phenotype. Pluripotency markers Sox2 and Oct4 are expressed without artificial induction. For the first time, multipotency of adult human brain-derived stem cells is demonstrated beyond tissue boundaries. We characterize these cells in detail in vitro including microarray and proteomic approaches. Whilst clarification of these cells' behavior is ongoing, results so far portend well for the future repair of tissues by transplantation of an adult patient's own-derived stem cells.

Publication Title

Expansion of multipotent stem cells from the adult human brain.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE41394
Adult human brain stem cells 2
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HumanWG-6 v3.0 expression beadchip

Description

Tissue repair using cell transplantation holds popular appeal. This underlines the need to understand stem cells within the target organ. Our laboratory works on the human brain. Using neurosphere methods, we and others have only been able to passage stem/progenitors a very few times with little expansion of numbers. Now we describe an efficient method for the establishment and propagation of human brain stem cells from whatever tissue samples we have tried. We describe virtually unlimited expansion of an authentic stem cell phenotype. Pluripotency markers Sox2 and Oct4 are expressed without artificial induction. For the first time, multipotency of adult human brain-derived stem cells is demonstrated beyond tissue boundaries. We characterize these cells in detail in vitro including microarray and proteomic approaches. Whilst clarification of these cells' behavior is ongoing, results so far portend well for the future repair of tissues by transplantation of an adult patient's own-derived stem cells.

Publication Title

Expansion of multipotent stem cells from the adult human brain.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE41390
Adult human brain stem cells 1
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HumanWG-6 v3.0 expression beadchip

Description

Tissue repair using cell transplantation holds popular appeal. This underlines the need to understand stem cells within the target organ. Our laboratory works on the human brain. Using neurosphere methods, we and others have only been able to passage stem/progenitors a very few times with little expansion of numbers. Now we describe an efficient method for the establishment and propagation of human brain stem cells from whatever tissue samples we have tried. We describe virtually unlimited expansion of an authentic stem cell phenotype. Pluripotency markers Sox2 and Oct4 are expressed without artificial induction. For the first time, multipotency of adult human brain-derived stem cells is demonstrated beyond tissue boundaries. We characterize these cells in detail in vitro including microarray and proteomic approaches. Whilst clarification of these cells' behavior is ongoing, results so far portend well for the future repair of tissues by transplantation of an adult patient's own-derived stem cells.

Publication Title

Expansion of multipotent stem cells from the adult human brain.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact