refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 639 results
Sort by

Filters

Technology

Platform

accession-icon GSE54294
Gene Expression Profiling of Peri-implant Healing of PLGA-Li+ Implants Suggests an Activated Wnt Signaling Pathway in vivo
  • organism-icon Rattus norvegicus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.0 ST Array (ragene20st)

Description

Bone development and regeneration is associated with the Wnt signaling pathway that, according to literature, can be modulated by lithium ions (Li+). The aim of this study was to evaluate the gene expression profile during peri-implant healing of poly(lactic-co-glycolic acid) (PLGA) implants with incorporated Li+, while PLGA without Li+ was used as control, and a special attention was then paid to the Wnt signaling pathway. The implants were inserted in rat tibia for 7 or 28 days and the gene expression profile was investigated using a genome-wide microarray analysis. The results were verified by qPCR and immunohistochemistry. Histomorphometry was used to evaluate the possible effect of Li+ on bone regeneration. The microarray analysis revealed a large number of significantly differentially regulated genes over time within the two implant groups. The Wnt signaling pathway was significantly affected by Li+, with approximately 34% of all Wnt-related markers regulated over time, compared to 22% for non-Li+ containing (control; Ctrl) implants. Functional cluster analysis indicated skeletal system morphogenesis, cartilage development and condensation as related to Li+. The downstream Wnt target gene, FOSL1, and the extracellular protein-encoding gene, ASPN, were significantly upregulated by Li+ compared with Ctrl. The presence of -catenin, FOSL1 and ASPN positive cells was confirmed around implants of both groups. Interestingly, a significantly reduced bone area was observed over time around both implant groups. The presence of periostin and calcitonin receptor-positive cells was observed at both time points. This study is to the best of the authors knowledge the first report evaluating the effect of a local release of Li+ from PLGA at the fracture site. The present study shows that during the current time frame and with the present dose of Li+ in PLGA implants, Li+ is not an enhancer of early bone growth, although it affects the Wnt signaling pathway.

Publication Title

Gene expression profiling of peri-implant healing of PLGA-Li+ implants suggests an activated Wnt signaling pathway in vivo.

Sample Metadata Fields

Sex, Specimen part, Treatment, Time

View Samples
accession-icon GSE13553
The effect of dietary CLA on mammary tumorigenesis
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Conjugated linoleic acid (CLA), a class of fatty acids found in beef and dairy products, has been shown to inhibit tumorigenesis in a variety of cancer model systems. Based on previously well-documented anti-tumor activity of CLA in rodent models of breast cancer, a pilot study was initiated to examine the effect of dietary CLA in a well-established transgenic model of breast cancer. Western blots were performed for the detection of AKT, c-Src, ERK1/2, and Cdc24. CLA significantly increased tumor burden (p<0.1) independent of an increase in oncogenic signaling. Mammary gland whole mounts indicated a loss of mammary adipose and extensive epithelial expansion in CLA-treated animals. Microarray analysis indicated a significant reduction in cytoskeletal related genes with at least a two-fold decrease in five out of six CLA-fed animals compared to untreated controls. Reduction of Cdc42, a key regulator of cell adhesion and cytoskeletal arrangements, was confirmed at the protein level by western blot (p<0.01). These findings suggest that dietary CLA may advance the malignant phenotype by promoting a loss of cell polarity and adhesion in the mammary gland epithelium. This action may have serious clinical implications for a subset high-risk population and warrants further investigation.

Publication Title

Pilot study on the effects of dietary conjugated linoleic acid on tumorigenesis and gene expression in PyMT transgenic mice.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE73519
Chemokine expression in murine RPE/choroid in response to systemic viral infection and elevated levels of circulating interferon-
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Purpose

Publication Title

Chemokine Expression in Murine RPE/Choroid in Response to Systemic Viral Infection and Elevated Levels of Circulating Interferon-γ.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE23687
Expression data from SPARKS CHARMS JIA cohort
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression on peripheral blood mononuclear cells (PBMC) from SPARKS CHARMS juvenile idiopathic arthritis (JIA) cohort pre and post methotrexate therapy. This is the first study to our knowledge, to evaluate gene expression profiles in children with JIA before and after MTX, and to analyze genetic variation in differentially expressed genes. We have identified a gene, which may contribute to genetic variability in MTX response in JIA.

Publication Title

Generation of novel pharmacogenomic candidates in response to methotrexate in juvenile idiopathic arthritis: correlation between gene expression and genotype.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE26308
Dissection of cancer cell and stromal cell-derived signals in melanoma xenografts following treatment with the stromal-targeting agent DMXAA
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

5,6-Dimethylxanthenone-4-acetic acid (DMXAA), a tumor vascular disrupting agent, is shown here to have substantial activity as a single agent against human A375 melanoma xenografts in nude mice (94 % hemorrhagic necrosis after 24 h, and 26 days growth delay following single dose at 25 mg/kg). CD45+ cells in tumor tissue increased 5-fold over the first 3 days after treatment, which was due largely to an influx of CD11b+ Ly6G+ neutrophils. Using murine and human multiplex cytokine assays to dissect the cytokines produced by host stromal cells or by the melanoma cells, it was shown that both the stromal cells and the A375 melanoma cells produced cytokines capable of attracting neutrophils into the tumor. The same xenografts were also analyzed using human and mouse Affymetrix microarrays to separately identify tumor cell-specific (human) and stromal cell-specific (mouse) gene expression changes. DMXAA induced numerous stromal cytokine mRNAs, including IP-10, IL-6, MIP-1/, MIP-2, KC, RANTES, MIG, MCP-1 and IL-1, many of which were also elevated at the protein level. Numerous human cytokine mRNAs were also induced including MCP-1, IL-8, GRO, VEGF, GM-CSF and IL-6, which again was in line with our protein data. Pathway analysis indicated that significant numbers of the stromal mRNAs induced by DMXAA are regulated downstream of TNF-, interferon- and NFB. Our results suggest that DMXAA may have utility in combination therapy for human melanoma through the activation of pro-inflammatory signalling pathways and cytokine expression from both stromal and tumor cells, leading to haemorrhagic necrosis, neutrophil influx and growth inhibition.

Publication Title

Dissection of stromal and cancer cell-derived signals in melanoma xenografts before and after treatment with DMXAA.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP074301
The function of c-Fos in hepatocarcinogenesis
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, Illumina Genome Analyzer IIx

Description

c-Fos, a member of the stress-activated Activator Protein 1 (AP-1) transcription factor family, is expressed in human hepatocellular cancer (HCC). Using genetically engineered mouse models (GEMMs) we show that hepatocyte-specific expression of c-Fos leads to a proliferative, de-differentiated phenotype, whereas hepatocyte-specific deletion of c-Fos protects against diethylnitrosamine (DEN)-induced liver cancer. Furthermore, c-Fos-expressing livers resemble human HCCs based on expression profiles. In the present RNA seq, we intend to analyze the transcriptomic profile of livers at 2 and 4 mo hepatocyte-specific c-Fos expression compared to the corresponding age-matched control mice. Moreover, we analyzed livers of mice with hepatocyte-specific deletion c-Fos at 48h after DEN treatment compared to identically treated control mice. Overall design: The general idea was to analyze the transcriptomic profile of hepatocyte-specific c-Fos over-expressing livers at 2 and 4 mo expression. Hereby, a hepatocyte-specific doxycycline (Dox)-switchable mouse model was (LAP-tTA; col1a1:Tet-O-fosFlag) was generated and c-Fos expression was induced at the age of 3 weeks by removal of doxycycline. Each sample LaptTA-fos-MUT represents an individual hepatocyte-specific c-fos expressing mouse at the indicated time-point and the corresponding identically treated control mouse LaptTA-fos-CO. Moreover, the transcriptomic profile of livers with hepatocyte-specific deletion of c-Fos at 48h after diethylnitrosamine (DEN)-induced liver cancer initiation was analyzed. For hepatocyte-specific knock-out of c-Fos, mice with conditional alleles of c-fos and the Alfp-Cre transgene were used. Control mice only carried the Alfp-Cre transgene. At the age of 8 weeks these mice were injected with 100mg/kg DEN. Each sample AlfpCre-fos-MUT_DEN represents an individual hepatocyte-specific c-fos knock-out mouse 48h after DEN and the identically treated control mouse AlfpCre-fos-CO-Cre+_DEN.

Publication Title

Liver carcinogenesis by FOS-dependent inflammation and cholesterol dysregulation.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon SRP062177
Fixed single-cell transcriptomic characterization of human radial glial diversity
  • organism-icon Homo sapiens
  • sample-icon 38 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

The human neocortex is created from diverse progenitors that are intermixed with multiple cell types in the prenatal germinal zones. These progenitors have been difficult to profile with unbiased transcriptomics since progenitors-particularly radial glia (RG)-are rare cell types, defined by a combination of intracellular markers, position and morphology. To circumvent these problems, we developed a method called FRSCR for transcriptome profiling of individual fixed, stained, and sorted cells. After validation of FRSCR with human embryonic stem cells, we profiled primary human RG that constitute only 1% of the mid-gestation cortex. These data showed that RG could be classified into ventricle zone-enriched RG (vRG) that expressed ANXA1 and CRYAB, and outer subventricular zone-localized RG (oRG) that expressed HOPX. Our study identified the first markers and molecular profiles of vRG and oRG cells, and provides an essential step for understanding molecular networks that control the development and lineage of human neocortical progenitors. Furthermore, FRSCR allows targeted single-cell transcriptomic profiling of many tissues that currently lack live-cell markers. Overall design: 26 Llive and 19 Fixed cultured hESCs were prepared and sequenced using both FRISCR and TritonX-100 Lysis as proof of principal for FRSCR.

Publication Title

Fixed single-cell transcriptomic characterization of human radial glial diversity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE75132
TMEM45A, SERPINB5 and p16INK4A transcript levels are predictive for development of high-grade cervical lesions
  • organism-icon Homo sapiens
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Women persistently infected with human papillomavirus (HPV) type 16 are at high risk for development of cervical intraepithelial neoplasia grade 3 or cervical cancer (CIN3+). We aimed to identify biomarkers for progression to CIN3+ in women with persistent HPV16 infection. In this prospective study, 11,088 women aged 2029 years were enrolled during 1991-1993, and re-invited for a second visit two years later. Cervical cytology samples obtained at both visits were tested for HPV DNA by Hybrid Capture 2 (HC2), and HC2-positive samples were genotyped by INNO-LiPA. The cohort was followed for up to 19 years via a national pathology register. To identify markers for progression to CIN3+, we performed microarray analysis on RNA extracted from cervical swabs of 30 women with persistent HPV16-infection and 11 HPV-negative women. After further validation, we found that high mRNA expression levels of TMEM45A, SERPINB5 and p16INK4a were associated with increased risk of CIN3+ in persistently HPV16-infected women.

Publication Title

TMEM45A, SERPINB5 and p16INK4A transcript levels are predictive for development of high-grade cervical lesions.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon SRP096727
Single cell RNAseq characterization of cell types produced over time in an in vitro model of human inhibitory interneuron differentiation.
  • organism-icon Homo sapiens
  • sample-icon 272 Downloadable Samples
  • Technology Badge Icon

Description

Diverse cell types are produced from dorsal and ventral regions of the developing neural tube. In this study we describe a system for generating human inhibitory interneurons by ventralizing human embryonic stem cells in vitro and characterizing the gene expression of the cell types produced over time. We engineered a DCX-Citrine/Y hESC line to sort and characterize progenitor and neuron transcriptomics separately at both the subpopulation and single cell level. The cells generated in vitro were compared to similar populations present in human fetal brain samples by mapping gene expression data from human fetal cells onto the principal component analysis (PCA) space of in vitro-derived populations. Weighted gene co-expression network analysis (WGCNA) was used to determine the discreet cell types present at D24, D54, D100 and D125 of culture, and describe the gene expression changes that occur in progenitor and neuron populations over time. Immature lateral ganglionic eminence and medial ganglionic eminence cells are present at early timepoints, along with MGE-like and dorsal pallium-like neuronal progenitors. At later timepoints we observe the emergence of SST-expressing interneurons, as well as oligodendrocyte and astrocyte progenitors. We also identified genes that were upregulated in somatostatin-expressing interneurons as they mature. Overall design: The transcriptomes of 1732 ventralized single cells were profiled by SmartSeq2 at different timepoints throughout a 125-day differentiation protocol that converted H1 human embryonic stem cells to a variety of ventrally-derived cell types.

Publication Title

Single-Cell Profiling of an In Vitro Model of Human Interneuron Development Reveals Temporal Dynamics of Cell Type Production and Maturation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP096986
Sub-population RNAseq characterization of cell types produced over time in an in vitro model of human inhibitory interneuron differentiation.
  • organism-icon Homo sapiens
  • sample-icon 37 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Diverse cell types are produced from dorsal and ventral regions of the developing neural tube. In this study we describe a system for generating human inhibitory interneurons by ventralizing human embryonic stem cells in vitro and characterizing the gene expression of the cell types produced over time. We engineered a DCX-Citrine/Y hESC line to sort and characterize progenitor and neuron transcriptomics separately at both the subpopulation and single cell level. The cells generated in vitro were compared to similar populations present in human fetal brain samples by mapping gene expression data from human fetal cells onto the principal component analysis (PCA) space of in vitro-derived populations. Weighted gene co-expression network analysis (WGCNA) was used to determine the discreet cell types present at D24, D54, D100 and D125 of culture, and describe the gene expression changes that occur in progenitor and neuron populations over time. Immature lateral ganglionic eminence and medial ganglionic eminence cells are present at early timepoints, along with MGE-like and dorsal pallium-like neuronal progenitors. At later timepoints we observe the emergence of SST-expressing interneurons, as well as oligodendrocyte and astrocyte progenitors. We also identified genes that were upregulated in somatostatin-expressing interneurons as they mature. Overall design: The transcriptomes of 1732 ventralized single cells were profiled by SmartSeq2 at different timepoints throughout a 125-day differentiation protocol that converted H1 human embryonic stem cells to a variety of ventrally-derived cell types.

Publication Title

Single-Cell Profiling of an In Vitro Model of Human Interneuron Development Reveals Temporal Dynamics of Cell Type Production and Maturation.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact