refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 250 results
Sort by

Filters

Technology

Platform

accession-icon GSE42758
Expression data from wild type and ttk^twk mutant whole ovaries
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Epithelial tube morphogenesis requires precise orchestration of cell signaling, shape, migration, and adhesion. Follicle cells in the Drosophila ovary form epithelial tubes, the lumens of which act as molds for the eggshell respiratory filaments, or dorsal appendages (DAs). The Tramtrack69 (TTK69) transcription factor controls DA lumen volume and shape by promoting tube expansion; the tramtrack mutation twin peaks (ttk^twk) reduces TTK69 levels late in oogenesis, inhibiting DA tube expansion.

Publication Title

Following the 'tracks': Tramtrack69 regulates epithelial tube expansion in the Drosophila ovary through Paxillin, Dynamin, and the homeobox protein Mirror.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon E-MEXP-515
Transcription profiling of diabetic neuropathy in dorsal root ganglia from streptozotocin-diabetic male wistar rats over the first 8 weeks of diabetes
  • organism-icon Rattus norvegicus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302), UNKNOWN

Description

A study of diabetic neuropathy in dorsal root ganglia from streptozotocin-diabetic male wistar rats over the first 8 weeks of diabetes

Publication Title

Identification of changes in gene expression in dorsal root ganglia in diabetic neuropathy: correlation with functional deficits.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage, Time

View Samples
accession-icon SRP123574
Temporal Changes in Macrophage Phenotype after Peripheral Nerve Injury
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Identification of temporal changes in gene expression in macrophages isolated from the site of nerve injury. Overall design: Macrophages were profiled at 3 timepoints (5, 14, and 28 days) after nerve injury with 2-3 independent biological replicates per timepoint.

Publication Title

Temporal changes in macrophage phenotype after peripheral nerve injury.

Sample Metadata Fields

Subject, Time

View Samples
accession-icon GSE13428
Gene Expression Profiling of Rat Hippocampus Following Exposure to the Acetylcholinesterase Inhibitor Soman
  • organism-icon Rattus norvegicus
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Soman (O-Pinacolyl methylphosphonofluoridate) is a potent neurotoxicant. Acute exposure to soman causes profound inhibition of the critical enzyme acetylcholinesterase, resulting in excessive levels of the neurotransmitter acetylcholine. Excessive acetylcholine levels cause convulsions, seizures, and respiratory distress. The initial cholinergic crisis can be overcome by rapid anti-cholinergic therapeutic intervention, resulting in increased survival. However, conventional treatments do not protect the brain from seizure-related damage, and thus neurodegeneration of soman-sensitive areas of the brain is a potential post-exposure outcome. We performed gene expression profiling of rat hippocampus following soman exposure to gain greater insight into the molecular pathogenesis of soman-induced neurodegeneration.

Publication Title

Gene expression profiling of rat hippocampus following exposure to the acetylcholinesterase inhibitor soman.

Sample Metadata Fields

Sex

View Samples
accession-icon SRP100068
Differential gene expression in Jagged1 treated human dental pulp cells.
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The present study aimed to determine mRNA expression profilling of indirect immobilized Jagged1 treated human dental pulp cells. Human dental pulp cells were seeded on indirect immobilized Jagged1 surface for 24 h. Cells on hFc immobilized surface was employed as the control. RNA sequencing was performed using NextSeq500, Illumina. Data were processed on FastQC and FastQ Toolkit and subsequently mapped with Homo sapiens hg38 using TopHat2. Mapped data were processed through Cufflink2 and Cuffdiff2. Results demonstrated 1,465 differentially expressed genes in Jagged1 treated cells compared with the control. Enriched pathway analysis revealed that Jagged1 treated cells upregulated genes mainly involved in extracellular matrix organization, disease, and signal transduction categories. However, genes related to cell cycle, DNA replication and DNA repair categories were downregulated. In conclusion, Jagged1 activates Notch signaling and regulates cell cycle pathway in hDPs. Overall design: The mRNA profiles of human dental pulp cells treated with indirect immobilized Jagged1 (10nM) for 24 h was evaluated by next genereation RNA sequencing (NextSeq 500, Illumina) in triplicates. Cells on hFc immobilized surface was used as the control. In some condition, cells were pretreated with a gamma secretase inhibitor (DAPT; 20 uM) for 30 mins prior to Jagged1 exposure.

Publication Title

RNA sequencing data of Notch ligand treated human dental pulp cells.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE118907
Esrrb extinction triggers dismantling of nave pluripotency and marks commitment to differentiation.
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Esrrb extinction triggers dismantling of naïve pluripotency and marks commitment to differentiation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE42310
COHCAP: City of Hope CpG Island Analysis Pipeline
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

COHCAP (City of Hope CpG Island Analysis Pipeline) is an algorithm to analyze single-nucleotide resolution DNA methylation data. It provides QC metrics, differential methylation for CpG Sites, differential methylation for CpG Islands, integration with gene expression data, and visualization of methylation values. COHCAP is currently the only DNA methylation package that can handle integration with gene expression data, and the results of this study show that COHCAP can identify regions of differential methylation with ~50% concordance with gene expression. COHCAP is scalable for analysis of both cell line data and heterogeneous patient data, and it can identify known cancer biomarkers as well as intriguing new roles of epigenetic regulation in cancer (such as methylation of estrogen receptor in breast cancer patients). This study also uses cell line data to show that COHCAP is capable of analyzing Illumina methylation array and targeted bisulfite sequencing data, with either 1-group or 2-group study designs. The accuracy of COHCAP is accessed using qPCR, EpiTect, and comparison of COHCAP regions of differential methylation with MIRA peaks. This software is freely available at https://sourceforge.net/projects/cohcap/.

Publication Title

COHCAP: an integrative genomic pipeline for single-nucleotide resolution DNA methylation analysis.

Sample Metadata Fields

Disease, Cell line

View Samples
accession-icon GSE7500
The role of RIP140 in retinoid mediated signaling
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Cell-and context-specific activities of nuclear receptors may in part be due to distinct coregulator complexes recruited to distinct subsets of target genes. RIP140 (also called NRIP1) is a ligand-dependent corepressor that is inducible with retinoic acid (RA). We have shown previously that silencing of RIP140 enhances RA-induced differentiation and enhances the induction of model RA target genes in human embryonal carcinoma cells (EC). Through use of microarray technology we sought to elucidate in a de novo fashion the global role of RIP140 in RA-dependent signaling. RIP140-dependent gene expression was largely consistent with RIP140 functioning to limit RAR signaling. Few if any genes were regulated in a manner to support a role for RIP140 in active repression. Interestingly, approximately half of the RA-dependent genes were unaffected by RIP140, suggesting that RIP140 may discriminate between different classes of RA target genes. RIP140 silencing also accelerated RA target gene activation and sensitized EC cells to low doses of RA. Together the data suggests that the RIP140-dependent RA target genes identified here may be particularly important in mediating RA-induced tumor cell differentiation. RIP140 may be an attractive target to sensitize tumor cells to retinoid-based differentiation therapy.

Publication Title

Selective repression of retinoic acid target genes by RIP140 during induced tumor cell differentiation of pluripotent human embryonal carcinoma cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE118906
Esrrb extinction triggers dismantling of nave pluripotency and marks commitment to differentiation [Microarray]
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Self-renewal of embryonic stem cells (ESCs) cultured in serum-LIF is incomplete with some cells initiating differentiation. While this is reflected in heterogeneous expression of naive pluripotency transcription factors (TFs), the link between TF heterogeneity and differentiation is not fully understood. Here we purify ESCs with distinct TF expression levels from serum-LIF cultures to uncover early events during commitment from nave pluripotency. ESCs carrying fluorescent Nanog and Esrrb reporters show Esrrb downregulation only in NANOGlow cells. Independent Esrrb reporter lines demonstrate that ESRRBnegative ESCs cannot effectively self-renew. Upon ESRRB loss, pre-implantation pluripotency gene expression collapses. ChIP-Seq identifies different regulatory element classes that bind both OCT4 and NANOG in ESRRBhigh cells. Class I elements lose NANOG and OCT4 binding in ESRRBnegative ESCs and associate with genes expressed preferentially in nave ESCs. In contrast, class II elements retain OCT4 but not NANOG binding in ESRRBnegative cells and associate with more broadly expressed genes. Therefore, mechanistic differences in TF function act cumulatively to restrict potency during exit from nave pluripotency.

Publication Title

Esrrb extinction triggers dismantling of naïve pluripotency and marks commitment to differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE42307
COHCAP HCT116 Mutant Comparison [expression]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Genome-wide expression and methylation differences are compared for a normal HCT116 cell line and a derived mutant with altered DNA methylation patterns.

Publication Title

COHCAP: an integrative genomic pipeline for single-nucleotide resolution DNA methylation analysis.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact