refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 45 results
Sort by

Filters

Technology

Platform

accession-icon SRP092885
RNA-seq experiments of round spermatid deficient for Epc1/2
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1000

Description

EPC1/TIP60-mediated histone acetylation facilitates spermiogenesis in mice Overall design: Gene expression was analyzed using WT and deficient mice for both Epc1 and Epc2.

Publication Title

EPC1/TIP60-Mediated Histone Acetylation Facilitates Spermiogenesis in Mice.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP173201
Transcriptome of Dp1Tyb and wild-type mouse embryonic fibroblasts [ERCC spike-ins]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Purpose: to identify the effects of the Dp1Tyb mutation on the transcriptome of mouse embryonic fibroblasts Overall design: RNAseq libraries were prepared from RNA isolated from mouse embryonic fibroblasts. Libraries were prepared from total RNA using the TruSeq Stranded mRNA Sample Prep Kit (Illumina) by the Advanced Sequencing Facility, The Francis Crick Institute. Libraries were sequenced (100 bases paired end) on the Illumina Hiseq 4000 Please note that this dataset contains ERCC spike ins to normalise the data

Publication Title

Gene expression dysregulation domains are not a specific feature of Down syndrome.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP065967
Sheep milk transcriptome
  • organism-icon Ovis aries
  • sample-icon 26 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

This study presents a dynamic characterization of the sheep milk transcriptome aiming at achieving a better understanding of the sheep lactating mammary gland. Transcriptome sequencing (RNA-seq) was performed on total RNA extracted from milk somatic cells from ewes on days 10, 50, 120 and 150 after lambing. The experiment was performed in Spanish Churra and Assaf breeds, which differ in their milk production traits. Nearly 67% of the annotated genes in the reference genome (Oar_v3.1) were expressed in ovine milk somatic cells. For the two breeds and across the four lactation stages studied, the most highly expressed genes encoded caseins and whey proteins. We detected differentially expressed genes (DEGs) across lactation points, with the largest differences being found, between day 10 and day 150. Upregulated GO terms at late lactation stages were linked mainly to developmental processes linked to extracellular matrix remodeling. A total of 256 annotated DEGs were detected in the Assaf and Churra comparison. Some genes selectively upregulated in the Churra breed grouped under the endopeptidase and channel activity GO terms. These genes could be related to the higher cheese yield of this breed. Overall, this study provides the first integrated overview on sheep milk gene expression. Overall design: A total of eight healthy sheep were selected to be included in the experiment, four Assaf and four Churra ewes. 32 Milk Somatic Cells (MSCs) samples were collected on days 10, 50, 120 and 150 after lambing. In each time point 4 biological replicates from each breed were collected unless on day 120 that only three biological replicates from each breed were sequenced.

Publication Title

Variant discovery in the sheep milk transcriptome using RNA sequencing.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE15477
Data integration from two microarray platforms identifies genetic inactivation of RIC8A in a breast cancer cell line
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Using array comparative genomic hybridization (aCGH), a large number of deleted genomic regions have been identified in human cancers. However, subsequent efforts to identify target genes selected for inactivation in these regions have often been challenging. We integrated here genome-wide copy number data with gene expression data and non-sense mediated mRNA decay rates in breast cancer cell lines to prioritize gene candidates that are likely to be tumour suppressor genes inactivated by bi-allelic genetic events. The candidates were sequenced to identify potential mutations. This integrated genomic approach led to the identification of RIC8A at 11p15 as a putative candidate target gene for the genomic deletion in the ZR-75-1 breast cancer cell line. We identified a truncating mutation in this cell line, leading to loss of expression and rapid decay of the transcript. We screened 127 breast cancers for RIC8A mutations, but did not find any pathogenic mutations. No promoter hypermethylation in these tumours was detected either. However, analysis of gene expression data from breast tumours identified a small group of aggressive tumours that displayed low levels of RIC8A transcripts. Real-time PCR analysis of 38 breast tumours showed a strong association between low RIC8A expression and the presence of TP53 mutations (P=0.006). We demonstrate a data integration strategy leading to the identification of RIC8A as a gene undergoing a classical double-hit genetic inactivation in a breast cancer cell line, as well as in vivo evidence of loss of RIC8A expression in a subgroup of aggressive TP53 mutant breast cancers.

Publication Title

Data integration from two microarray platforms identifies bi-allelic genetic inactivation of RIC8A in a breast cancer cell line.

Sample Metadata Fields

Sex, Disease, Cell line, Treatment, Time

View Samples
accession-icon SRP055874
Defective structural RNA processing in relapsing-remitting multiple sclerosis
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

It is fundamentally unknown how normal cellular processes or responses to extracellular stimuli may invoke polyadenylation and degradation of ncRNA substrates or if human disease processes exhibit defects in polyadenylation of ncRNA substrates as part of their pathogenesis. Our results demonstrate that mononuclear cells from subjects with relapsing-remitting multiple sclerosis (RRMS) exhibit pervasive increases in levels of polyadenylated ncRNAs including Y1 RNA, 18S and 28S rRNA, and U1, U2, and U4 snRNAs and these defects are unique to RRMS. Defects in expression of both Ro60 and La proteins in RRMS appear to contribute to increased polyadenylation of ncRNAs. Further, IFN-ß1b, a common RRMS therapy, restores both Ro60 and La levels to normal as well as levels of polyadenylated Y1 RNA and U1 snRNA suggesting that aberrant polyadenylation of ncRNA substrates may have pathogenic consequences. Overall design: We extracted RNA from peripheral whole blood in healthy control subjects and patients with established relapsing-remitting multiple sclerosis using PaxGene tubes.

Publication Title

Defective structural RNA processing in relapsing-remitting multiple sclerosis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP055474
Expression and functions of long noncoding RNAs during human T helper cell differentiation
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

To improve our understanding of lncRNA expression in T cells, we used whole genome sequencing (RNA-seq) to identify lncRNAs expressed in human T cells and those selectively expressed in T cells differentiated under TH1, TH2, or TH17 polarizing conditions. The majority of these lineage-specific lncRNAs are co-expressed with lineage-specific protein-coding genes. These lncRNAs are predominantly intragenic with co-expressed protein-coding genes and are transcribed in sense and antisense orientations with approximately equal frequencies. Further, genes encoding TH lineage specific mRNAs are not randomly distributed across the genome but are highly enriched in the genome in genomic regions also containing genes encoding TH lineage-specific lncRNAs. Our analyses also identify a cluster of antisense lncRNAs transcribed from the RAD50 locus that are selectively expressed under TH2 polarizing conditions and co-expressed with IL4, IL5 and IL13 genes. Depletion of these lncRNAs via selective siRNA treatment demonstrates the critical requirement of these lncRNAs for expression of the TH2 cytokines, IL-4, IL-5 and IL-13. Collectively, our analyses identify new lncRNAs expressed in a TH lineage specific manner and identify a critical role for a cluster of lncRNAs for expression of genes encoding TH2 cytokines. Overall design: Human peripheral blood mononuclear cells (PBMC) were cultured under TH1, TH2, and TH17 polarizing conditions. TH1, TH2, and TH17 primary and effector cultures were isolated and poly(A)+ and total RNA sequencing performed.

Publication Title

Expression and functions of long noncoding RNAs during human T helper cell differentiation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE66525
A gene expression profile associated with relapse of cytogenetically normal acute myeloid leukemia is enriched for leukemia stem cell genes
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Relapse, associated with therapy resistance, is a major clinical problem in acute myeloid leukemia (AML), yet little is known about the underlying molecular mechanisms. Using genome wide gene expression profiling on 11 paired samples from diagnosis and relapse, we show that the expression of a substantial number of genes was altered in a highly consistent manner between these disease stages. Furthermore, the relapse associated gene expression profile was significantly enriched for leukemia stem cell (LSC) genes, indicating that recurring AML is characterized by increased stemness, and supporting the concept that it is due to the outgrowth of chemotherapy resistant LSCs.

Publication Title

A gene expression profile associated with relapse of cytogenetically normal acute myeloid leukemia is enriched for leukemia stem cell genes.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE24790
Neonatal beta cells lack the specialized metabolic phenotype of mature beta cells
  • organism-icon Rattus norvegicus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome U34 Array (rgu34a)

Description

Fetal and neonatal beta cells have poor glucose-induced insulin secretion and only gain robust glucose responsiveness several weeks after birth. This unresponsiveness may be due to a generalized immaturity of the metabolic pathways normally found in beta cells.

Publication Title

Rat neonatal beta cells lack the specialised metabolic phenotype of mature beta cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE33984
KSHV regulation of gene expression in the human endothelial cell line EAHY
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

KSHV promotes endothelia to mesenchymal transformation (EntMT) in EAHY cells

Publication Title

Kaposi sarcoma herpesvirus promotes endothelial-to-mesenchymal transition through Notch-dependent signaling.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE37302
Lenalidomide and Pomalidomide inhibit Multiple Myeloma-induced osteoclast formation and RANKL/OPG ratio in myeloma microenvironment targeting the expression of adhesion molecules.
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Multiple myeloma (MM)-induced osteoclast (OC) formation occurs in close contact with MM cell infiltration into the bone marrow (BM) due to the imbalance of the receptor activator of NF-kappa-B ligand (RANKL)/osteoprotegerin (OPG) ratio in favor of RANKL in the micorenvironment. Soluble factors including CCL3/MIP-1?, IL7 and IL-3 also contribute to the increased OC formation in MM.The immunomodulatory drugs (IMiDs) directly inhibit OCs, however their effect on the mechanisms involved in MM-induced OC formation are not known and have been investigated in this study. We found that both Lenalidomide (LEN) and Pomalidomide (POM), at concentration ranging reached in vivo, significantly blunted RANKL up-regulation normalizing the RANKL/OPG ratio in human BM osteoprogenitor cells (PreOBs) co-cultured with MM cells and inhibited CCL3/MIP-1? production by MM cells. The reduction of CD49d expression on MM cells, a molecule critically involved in RANKL up-regulation in the micorenvironment, accompanied this effect. Consistently the pro-osteoclastogenic property of the conditioned medium of MM cells co-cultured with PreOBs was reduced in the presence of both IMiDs. By microarray analysis we further investigated the effect of POM and LEN on the transcriptional profile of both MM cells and PreOBs. We found a significant down-regulation in MM cells, in addition to CD49d, of genes belonging to the adhesion molecules family such as ITGA8 and ICAM2 (CD102) induced by both IMiDs compounds. In conclusion our data suggest that POM and LEN inhibits MM-induced OC formation through the inhibition of RANKL/OPG ratio targeting the expression of adhesion molecules by MM cells.

Publication Title

Immunomodulatory drugs lenalidomide and pomalidomide inhibit multiple myeloma-induced osteoclast formation and the RANKL/OPG ratio in the myeloma microenvironment targeting the expression of adhesion molecules.

Sample Metadata Fields

Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact