refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 215 results
Sort by

Filters

Technology

Platform

accession-icon GSE7757
Robustness of gene expression signatures in leukemia: comparison of three distinct total RNA preparation procedures.
  • organism-icon Homo sapiens
  • sample-icon 96 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Microarray gene expression (MAGE) signatures allow insights into the transcriptional processes of leukemias and may evolve as a molecular diagnostic test. Introduction of MAGE into clinical practice of leukemia diagnosis will require comprehensive assessment of variation due to the methodologies.

Publication Title

New data on robustness of gene expression signatures in leukemia: comparison of three distinct total RNA preparation procedures.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE29326
Gene expression profiling of pediatric myelodysplastic syndrome (MDS) characterizes disease subtype and time to progression into acute myeloid leukemia (AML)
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Identification of relevant subgroups in childhood MDS patients by gene expression analysis and gene involve in progression into AML

Publication Title

Gene expression signatures of pediatric myelodysplastic syndromes are associated with risk of evolution into acute myeloid leukemia.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE31997
Gene Expression data from mouse bone marrow derived macrophages infected by the promastigote form of Leishmania major parasite (P) or Killed parasite (Kp) during a time course of infection
  • organism-icon Mus musculus
  • sample-icon 96 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Comparative analysis of resistant and susceptible macrophage gene expression response to Leishmania major parasite.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE31996
Gene Expression data from Mouse C57bl6 Bone marrow derived macrophages infected by the promastigote form of Leishmania major parasite (P) or Killed parasite (Kp) during a time course of infection [C57bl6]
  • organism-icon Mus musculus
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We analyzed the transcriptional signatures of mouse bone marrow-derived macrophages (BMDM) at different times after infection with promastigotes of the protozoan parasite Leishmania major.

Publication Title

Comparative analysis of resistant and susceptible macrophage gene expression response to Leishmania major parasite.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE71836
Leukemia reconstitution in vivo is driven by cells in early cell cycle and low metabolic state
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To characterize LICs in ALL irrespective of surface markers expression, we investigated leukemia initiating activities of cellular subfractions of patient-derived xenograft BCP-ALL cells sorted according to different cell cycle phases (i.e. G0/G1 and G2/M) followed by transplantation onto NOD/SCID mice. All cell fractions led to leukemia engraftment indicating LIC activity irrespective of cell cycle stage. Most importantly, cells isolated from G0/G1 cell cycle phases led to early leukemia engraftment in contrast to cells from late cell cycle (G2/M). To further characterize cells with different engraftment potential in vivo, we analyzed the gene expression profiles of early (G1b early) and late (G2/M) engrafting cells.

Publication Title

Leukemia reconstitution <i>in vivo</i> is driven by cells in early cell cycle and low metabolic state.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE53514
Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

CD4(+) type 1 T regulatory (Tr1) cells are induced in the periphery and have a pivotal role in promoting and maintaining tolerance. The absence of surface markers that uniquely identify Tr1 cells has limited their study and clinical applications. By gene expression profiling of human Tr1 cell clones, we identified the surface markers CD49b and lymphocyte activation gene 3 (LAG-3) as being stably and selectively coexpressed on mouse and human Tr1 cells. We showed the specificity of these markers in mouse models of intestinal inflammation and helminth infection and in the peripheral blood of healthy volunteers. The coexpression of CD49b and LAG-3 enables the isolation of highly suppressive human Tr1 cells from in vitro anergized cultures and allows the tracking of Tr1 cells in the peripheral blood of subjects who developed tolerance after allogeneic hematopoietic stem cell transplantation. The use of these markers makes it feasible to track Tr1 cells in vivo and purify Tr1 cells for cell therapy to induce or restore tolerance in subjects with immune-mediated diseases.

Publication Title

Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE31995
Gene Expression data from Mouse Balb/c Bone marrow derived macrophages infected by the promastigote form of Leishmania major parasite (P) or Killed parasite (Kp) during a time course of infection [Balb/c]
  • organism-icon Mus musculus
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We analyzed the transcriptional signatures of mouse bone marrow-derived macrophages (BMDM) at different times after infection with promastigotes of the protozoan parasite Leishmania major.

Publication Title

Transcriptomic signature of Leishmania infected mice macrophages: a metabolic point of view.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE136952
Autophagy maintains intestinal stem cell integrity
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

The intestinal epithelium is continuously renewed by a pool of intestinal stem cells expressing Lgr5. We show that deletion of the key autophagy gene Atg7 affects the survival of Lgr5+ intestinal stem cells. Mechanistically, this involves defective DNA repair, oxidative stress, and altered interactions with the microbiota. This study highlights the importance of autophagy in maintaining the integrity of intestinal stem cells.

Publication Title

Essential role for autophagy protein ATG7 in the maintenance of intestinal stem cell integrity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE113512
A HIF-1/Wnt signaling-dependent control of gene transcription regulates neuronal differentiation of glioblastoma stem cells
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Clariom S Human array (clariomshuman)

Description

HIF-1 plays a crucial role in sustaining glioblastoma (GBM) cell growth and the maintenance of their undifferentiated phenotype. However, HIF-1 has been suggested to interplay with Wnt signaling components, thus activating a neuronal differentiation process in both GBM and normal brain. Here, we show that a -catenin/TCF1/HIF-1 complex directly controls the transcription of neuronal differentiation genes in hypoxia. Conversely, at higher oxygen levels, the increased expression of TCF4 exerts a transcriptional inhibitory function on the same genomic regions, thus counteracting differentiation. Moreover, we demonstrate the existence of a positive correlation between HIF-1, TCF1 and neuronal phenotype in GBM tumors, accompanied by the over-expression of several Wnt signaling components, finally impacting on patient prognosis. In conclusion, we unveil a mechanism by which TCF1 and HIF-1 induce a reminiscent neuronal differentiation of hypoxic GBM cells, which is hampered, in normoxia, by high levels of TCF4, thus de facto sustaining cell aggressiveness.

Publication Title

HIF-1α/Wnt signaling-dependent control of gene transcription regulates neuronal differentiation of glioblastoma stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE14858
Gene exprssion profile classification predicts clinical outcome in juvenile myelomonocytic leukemia
  • organism-icon Homo sapiens
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression analysis identified a specific signature of differentially expressed genes discriminating good and poor responders in JMML patients.

Publication Title

Gene expression-based classification as an independent predictor of clinical outcome in juvenile myelomonocytic leukemia.

Sample Metadata Fields

Specimen part, Disease

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact