refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 215 results
Sort by

Filters

Technology

Platform

accession-icon GSE10522
Expression data of Arabidopsis thaliana rosettes during chilling
  • organism-icon Arabidopsis thaliana
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

To investigate the response of Arabidopsis thaliana plants to non-freezing, cool temperatures, we subjected four week old plants to various chilling temperatures at defined times during the diurnal cycle to control for diurnal effects on transcription. From the same plants, metabolites and enzyme activities were measured as well. Interestingly a gradual change could be observed over a wide range of temperatures. Some of which could be attributed to the CBF program.

Publication Title

Multilevel genomic analysis of the response of transcripts, enzyme activities and metabolites in Arabidopsis rosettes to a progressive decrease of temperature in the non-freezing range.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE11024
Microarray analaysis of adult and childhood renal tumors.
  • organism-icon Homo sapiens
  • sample-icon 75 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Analysis of adult and childhood tumors reveals activation of an E2F3 signature unique to Wilms tumors.

Publication Title

The E2F3-Oncomir-1 axis is activated in Wilms' tumor.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE12627
Non-supervised hierarchical clustering of gene expression data
  • organism-icon Homo sapiens
  • sample-icon 52 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Despite the frequent detection of circulating tumor antigen-specific T cells, either spontaneously or following active immunization or adoptive transfer, immune-mediated cancer regression occurs only in the minority of patients. One theoretical rate-limiting step is whether effector T cells successfully migrate into metastatic tumor sites. Affymetrix gene expression profiling performed on a series of metastatic melanoma biopsies revealed a major segregation of samples based on the presence or absence of T cell-associated transcripts. The presence of lymphocytes correlated with the expression of defined chemokine genes. A subset of 6 chemokines (CCL2, CCL3, CCL4, CCL5, CXCL9, and CXCL10) was confirmed by protein array and/or quantitative RT-PCR to be preferentially expressed in tumors that contained T cells. Corresponding chemokine receptors were found to be upregulated on human CD8+ effector T cells, and transwell migration assays confirmed the ability of each of these chemokines to promote migration of CD8+ effector cells in vitro. Screening by chemokine protein array identified a subset of melanoma cell lines produced a similar broad array of chemokines. These melanoma cells more effectively recruited human CD8+ effector T cells when implanted as xenografts in NOD/scid mice in vivo. Chemokine blockade with specific antibodies inhibited migration of CD8+ T cells. Our results suggest that lack of critical chemokines in a subset of melanoma metastases may limit the migration of activated T cells, which in turn could limit the effectiveness of anti-tumor immunity.

Publication Title

Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE4737
HCaRG vs NEO
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Summary:

Publication Title

HCaRG increases renal cell migration by a TGF-alpha autocrine loop mechanism.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE2555
HCaRG-9 vs NEO-1
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2), Affymetrix Human Genome U133A Array (hgu133a)

Description

HEK293 cells were transfected with control plasmid (pcDNAI/Neo;Invitrogen) or with the plasmid encoding HCaRG. Stable transfectants were synchronized and grown in the presence of 10% FBS for 48 h. Total RNAs were purified with the mini RNeasy kit (Qiagen).

Publication Title

HCaRG increases renal cell migration by a TGF-alpha autocrine loop mechanism.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE74659
SCL and LMO1 reprogram thymocytes into self-renewing cells.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

The SCL and LMO1 oncogenic transcription factors reprogram thymocytes into self-renewing pre-leukemic stem cells (pre-LSCs). Here we report that SCL directly interacts with LMO1 to activate the transcription of a self-renewal program coordinated by LYL1.

Publication Title

SCL, LMO1 and Notch1 reprogram thymocytes into self-renewing cells.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE71663
Profiling of Brat associated mRNAs from Drosophila embryos by RIP-CHIP
  • organism-icon Drosophila melanogaster
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Drosophila Gene 1.1 ST Array (drogene11st)

Description

The Drosophila TRIM-NHL protein Brain tumor (Brat) plays important roles during early embryogenesis, in cell fate decisions, during neurogenesis and in mature neurons. Brat is an RNA-binding protein and functions as translational repressor. However, which RNAs Brat regulates and how RNA-binding specificity is achieved, is unknown. Using RNA-Immunoprecipitation we identify Brat-bound mRNAs in Drosophila embryos and define a consensus binding motif.

Publication Title

The Crystal Structure of the NHL Domain in Complex with RNA Reveals the Molecular Basis of Drosophila Brain-Tumor-Mediated Gene Regulation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP074247
Global Profiling of the Cellular Alternative RNA Splicing Landscape During Virus-host Interactions
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Background Alternative splicing (AS) is a central mechanism of genetic regulation which modifies the sequence of RNA transcripts in higher eukaryotes. AS has been shown to increase both the variability and diversity of the cellular proteome by changing the composition of resulting proteins through differential choice of exons to be included in mature mRNAs. Results In the present study, alterations to the global RNA splicing landscape of cellular genes upon viral infection were investigated through high-throughput RNA sequencing (RNA-seq) studies using mammalian reovirus as a model. Our study provides the first comprehensive portrait of global changes in the RNA splicing signatures that occur in eukaryotic cells following infection with a human virus. We identify modifications in the AS patterns of 240 cellular transcripts frequently involved in the regulation of gene expression and RNA metabolism. A significant number of the modified transcripts are also encoded by genes with important roles in viral infection/immunity. These modifications are expected to alter the functions of many cellular proteins. Finally, we used RT-PCR analysis in order to experimentally validate differential modifications in alternative splicing patterns that were observed through RNA-seq studies. Conclusion The present study demonstrated that viral infection can extensively modify the splicing patterns of numerous cellular transcripts. These findings provide additional insights into the complexity of virus-host interactions as these splice variants expand proteome diversity and function during viral infection. Finally, these data open new avenues of research for a better understanding of post-transcriptional events during virus infection and possible new targets toward the development of antiviral agents. Overall design: mRNAs were isolated from L929 mouse cell line, 14 hours after infection with T3D-S Reovirus or T3D-S Mutant reovirus at a MOI of 50. Control cells were uninfected. The resulting libraries were multiplexed and paired-end sequenced using Illumina HiSeq. Gene expression and alternative splicing were caracterized using Bowtie and RSEM.

Publication Title

Global Profiling of the Cellular Alternative RNA Splicing Landscape during Virus-Host Interactions.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE16853
Expression data from Foxl2 wild-type and mutant ovaries and testes
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Foxl2 is a forkhead transcription factor expressed only in the female, but not in the male gonad. We have created mice homozygous mutant for the Foxl2 gene (KO) as well as mice carrying a conditional mutant Foxl2 allele (floxed).

Publication Title

Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE4592
Reprogramming of CTLs into natural killer-like cells in celiac disease
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Celiac disease is an intestinal inflammatory disorder induced by dietary gluten in genetically susceptible individuals. The mechanisms underlying the massive expansion of interferon gproducing intraepithelial cytotoxic T lymphocytes (CTLs) and the destruction of the epithelial cells lining the small intestine of celiac patients have remained elusive. We report massive oligoclonal expansions of intraepithelial CTLs that exhibit a profound genetic reprogramming of natural killer (NK) functions. These CTLs aberrantly expressed cytolytic NK lineage receptors, such as NKG2C, NKp44, and NKp46, which associate with adaptor molecules bearing immunoreceptor tyrosine-based activation motifs and induce ZAP-70 phosphorylation, cytokine secretion, and proliferation independently of T cell receptor signaling. This NK transformation of CTLs may underlie both the self-perpetuating, gluten-independent tissue damage and the uncontrolled CTL expansion leading to malignant lymphomas in severe forms of celiac disease. Because similar changes were detected in a subset of CTLs from cytomegalovirus-seropositive patients, we suggest that a stepwise transformation of CTLs into NK-like cells may underlie immunopathology in various chronic infectious and inflammatory diseases.

Publication Title

Reprogramming of CTLs into natural killer-like cells in celiac disease.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact