refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 242 results
Sort by

Filters

Technology

Platform

accession-icon GSE17800
Myocardial gene expression profiles and cardiodepressant autoantibodies predict response of patients with dilated cardiomyopathy to immunoadsorption therapy
  • organism-icon Homo sapiens
  • sample-icon 46 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background: Immunoadsorption with subsequent IgG substitution (IA/IgG) represents a novel therapeutic approach in treatment of dilated cardiomyopathy (DCM) which leads to improvement of left ventricular ejection fraction (LVEF). However, response to this therapeutic intervention shows wide inter-individual variability. In this pilot study, we tested the value of clinical, biochemical and molecular parameters for prediction of the response of patients with DCM to IA/IgG.

Publication Title

Myocardial gene expression profiles and cardiodepressant autoantibodies predict response of patients with dilated cardiomyopathy to immunoadsorption therapy.

Sample Metadata Fields

Sex, Age, Disease

View Samples
accession-icon GSE19303
Changes of myocardial gene expression and protein composition in patients with dilated cardiomyopathy after immunoadsorption with subsequent immunoglobulin substitution
  • organism-icon Homo sapiens
  • sample-icon 79 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Immunoadsorption with subsequent immunoglobulin substitution (IA/IgG) represents a therapeutic approach for patients with dilated cardiomyopathy (DCM). Here, we studied which molecular cardiac alterations are initiated after this treatment.

Publication Title

Changes of myocardial gene expression and protein composition in patients with dilated cardiomyopathy after immunoadsorption with subsequent immunoglobulin substitution.

Sample Metadata Fields

Sex, Age, Disease

View Samples
accession-icon GSE9811
Individual retinal progenitor cells display extensive heterogeneity of gene expression
  • organism-icon Mus musculus
  • sample-icon 41 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The development of complex tissues requires that mitotic progenitor cells integrate information from the environment. The highly varied outcomes of such integration processes undoubtedly depend at least in part upon variations among the gene expression programs of individual progenitor cells. To date, there has not been a comprehensive examination of these differences among progenitor cells of a particular tissue. Here, we used comprehensive gene expression profiling to define these differences among individual progenitor cells of the vertebrate retina. Retinal progenitor cells (RPCs) have been shown by lineage analysis to be multipotent throughout development and to produce distinct types of daughter cells in a temporal, conserved order. A total of 42 single RPCs were profiled on Affymetrix arrays. An extensive amount of heterogeneity in gene expression among RPCs, even among cells isolated from the same developmental time point, was observed. While many classes of genes displayed heterogeneity of gene expression, the expression of transcription factors constituted a significant amount of the observed heterogeneity. Additionally, the expression of cell cycle related transcripts showed differences among those associated with G2 and M, versus G1 and S phase, suggesting different levels of regulation for these genes. These data provide insights into the types of processes and genes that are fundamental to cell fate choices, proliferation decisions, and, for cells of the central nervous system, the underpinnings of the formation of complex circuitry.

Publication Title

Individual retinal progenitor cells display extensive heterogeneity of gene expression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE15566
Identification of genes expressed preferentially in the developing peripheral margin of the optic cup
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Identification of genes expressed in a preferential manner in the developing ciliary body/iris will provide a starting point for future functional analyses. To identify candidate genes expressed in a variety of ocular tissues during development, we have profiled single cells from the developing eye. Post hoc identification of the origin of these cells showed that they included cells from the periphery of the developing optic cup. By comparing the expression profiles of these cells to many retinal cell types, candidate genes for preferential expression in the periphery were identified.

Publication Title

Identification of genes expressed preferentially in the developing peripheral margin of the optic cup.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE12601
Development and Diversification of Retinal Amacrine Interneurons at Single Cell Resolution
  • organism-icon Mus musculus
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The vertebrate retina uses diverse neuronal cell types arrayed into complex neural circuits to extract, process and relay information from the visual scene to the higher order processing centers of the brain. Amacrine cells, a diverse class of inhibitory interneurons, are thought to mediate the majority of the processing of the visual signal that occurs within the retina. Despite morphological characterization, the number of known molecular markers of amacrine cell types is still much smaller than the 26 morphological types that have been identified. Furthermore, it is not known how this diversity arises during development. Here, we have combined in vivo genetic labeling and single cell genome-wide expression profiling to: 1) Identify specific molecular types of amacrine cells; 2) Demonstrate the molecular diversity of the amacrine cell class.

Publication Title

Development and diversification of retinal amacrine interneurons at single cell resolution.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE57917
Expression data from E14.5 Onecut1 WT and KO animals
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

In this study, we examine the consequences of the loss of two related factors, Onecut1 and Onecut2, during mouse retinal development.

Publication Title

Onecut1 and Onecut2 play critical roles in the development of the mouse retina.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE57918
Expression data from adult Onecut2 WT and KO animals
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

In this study, we examine the consequences of the loss of two related factors, Onecut1 and Onecut2, during mouse retinal development and maturation.

Publication Title

Onecut1 and Onecut2 play critical roles in the development of the mouse retina.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE25206
Transcriptomic shifts in rice roots in response to Cr (VI) stress
  • organism-icon Oryza sativa indica group
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

Detailed analysis of genome-wide transcriptome profiling in rice root is reported here, following Cr-plant interaction. Such studies are important for the identification of genes responsible for tolerance, accumulation and defense response in plants with respect to Cr stress. Rice root metabolome analysis was also carried out to relate differential transcriptome data to biological processes affected by Cr (VI) stress in rice.

Publication Title

Transcriptomic and metabolomic shifts in rice roots in response to Cr (VI) stress.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE75382
Retinal transcriptomes of Plk3-deficient animals
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Polo-Like Kinase 3 Appears Dispensable for Normal Retinal Development Despite Robust Embryonic Expression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE75279
Expression data from postnatal Plk3 WT and KO animals
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

These data investigate the transcriptomic differences in the whole retinas of mice resulting from loss of Polo-like Kinase 3 (Plk3) over various stages of development, including adulthood, postnatal day (P)7, and P0.

Publication Title

Polo-Like Kinase 3 Appears Dispensable for Normal Retinal Development Despite Robust Embryonic Expression.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact