refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 270 results
Sort by

Filters

Technology

Platform

accession-icon GSE44677
Expression status of mRNA for sex hormone receptors in human dental pulp cells and the response to sex hormones in the cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Objectives: Sex hormone receptors are reported to be present in human dental pulp (HDP) cells. The purpose of this study was to examine the biological significance of estrogen and androgen receptors (ER and AR, respectively) in HDP cells. Design: We isolated HDP cells expressing ER- and AR-mRNAs and investigated the expression status of the receptors and the response to sex hormones in the cells. Results: HDP cells expressing ER- and/or AR-mRNAs had the ability to form alizarin red S-positive nodules in which calcium and phosphorus were deposited in vitro and to differentiate into odontoblasts-like cells and dentin-like tissue in vivo. Individual clones isolated from HDP cells exhibited a different expression pattern of mRNA for ER and AR. Some clones expressed ER- and/or ER-mRNAs and the others coexpressed ER- and AR-mRNAs. Using the Ingenuity software, we found that 17-estradiol (E2) and dihydrotestosterone (DHT) could act directly on HDP cells through ER- or androgen signaling-mediated mechanisms. E2 or DHT stimulated the mRNA expression for genes related to odontogenesis of dentin-containing teeth and odontoblast differentiation, suggesting that ER and AR in HDP cells may be involved in dentinogenesis. Conclusions: Our findings provide new insights into the biological significance of sex hormone receptors in HDP cells.

Publication Title

Expression status of mRNA for sex hormone receptors in human dental pulp cells and the response to sex hormones in the cells.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE26077
Expression genes induced by intermittent mechanical stress (MS) in human periodontal ligament (PDL) cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Excessive MS is known to result in disappearance of the alveolar hard line, enlargement of thePDL space, and destruction of alveolar bone, leading to occlusal traumatism. The regulatory role of MS is believed to play a critical role in the process of alveolar bone remodeling. However, little is known about the effect of excessive MS on expression of osteoclastogenesis-related genes in human PDL cells.

Publication Title

Hyperocclusion stimulates osteoclastogenesis via CCL2 expression.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE2361
Expression Proflies of Human Normal tissues
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

We performed expression profiling of 36 types of normal human tissues and identified 2,503 tissue-specific genes. We then systematically studied the expression of these genes in cancers by re-analyzing a large collection of published DNA microarray datasets. Our study shows that integration of each gene's breadth of expression (BOE) in normal tissues is important for biological interpretation of the expression profiles of cancers in terms of tumor differentiation, cell lineage and metastasis.

Publication Title

Interpreting expression profiles of cancers by genome-wide survey of breadth of expression in normal tissues.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE51510
Role of TTF-1/NKX2-1, Smad3 and Smad4 on lung cancer cell lines
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A Smad3 and TTF-1/NKX2-1 complex regulates Smad4-independent gene expression.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE49675
Expression data of human lung adenocarcinoma cell line H441 treated with TTF-1/NKX2-1 siRNA and TGF-beta
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We determined and analyzed the effect of TTF-1/NKX2-1 on Smad3/Smad4 binding sites by ChIP-sequencing.

Publication Title

A Smad3 and TTF-1/NKX2-1 complex regulates Smad4-independent gene expression.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP040727
Effect of TTF-1/NKX2-1 expression on TGF-beta induced gene expression in A549 lung cancer cell line.
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

TTF-1/NKX2-1 was expressed by adenoviral vector and changes in gene expression were determined by RNA-sequencing. Overall design: A549 cells were infected with Ad-TTF-1 or Ad-LacZ vectors and stimulated with TGF-beta for 24 hours or left untreated. Expression of polyA RNA was determined.

Publication Title

A Smad3 and TTF-1/NKX2-1 complex regulates Smad4-independent gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE63251
Regulation of LbetaT2 gonadotrope gene expression by GnRH pulses
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

LbetaT2 cells exposed to different number and concentration of GnRH pulses over 4 hours during in vitro perfusion culture

Publication Title

Pulse sensitivity of the luteinizing hormone beta promoter is determined by a negative feedback loop Involving early growth response-1 and Ngfi-A binding protein 1 and 2.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE27661
SMAD1/5 binding regions and expression data of human umbilical vein endothelial cells (HUVECs) and pulmonary arterial smooth muscle cells (PASMCs) treated with BMPs
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

ChIP-seq reveals cell type-specific binding patterns of BMP-specific Smads and a novel binding motif.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE27631
Expression data of human umbilical vein endothelial cells (HUVECs) treated with BMP-6 and BMP-9
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Smad1/5 are transcription factors that engage in BMP-induced transcription. We determined and analyzed Smad1/5 binding sites by ChIP-sequencing.

Publication Title

ChIP-seq reveals cell type-specific binding patterns of BMP-specific Smads and a novel binding motif.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE28847
Expression data of human pulmonary arterial smooth muscle cells (PASMCs) treated with BMP-4
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Smad1/5 are transcription factors that engage in BMP-induced transcription. We determined and analyzed Smad1/5 binding sites by ChIP-sequencing. We used expression microarrays to compare the Smad1/5 binding sites identified by ChIP-seq to BMP-induced gene expressions.

Publication Title

ChIP-seq reveals cell type-specific binding patterns of BMP-specific Smads and a novel binding motif.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact