refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 3 of 3 results
Sort by

Filters

Technology

Platform

accession-icon GSE44331
Expression data from C57BL/6J and C57BL6/J Sarm-deficient mice uninfected or infected with vesicular stomatitis virus (VSV)
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Sarm-deficient mice are protected from VSV encephalitis and death. Microarray was done to examine genes contributing to this phenotype

Publication Title

SARM is required for neuronal injury and cytokine production in response to central nervous system viral infection.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE44851
Comparative gene expression profiles of immune inhibitory and non-inhibitory melanoma cell lines
  • organism-icon Homo sapiens
  • sample-icon 65 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Dysfunction in type I interferon (IFN) signaling occurs in patients with stage II or more advanced cancer. After screening the effects of a panel of 12 melanoma cell lines on PBMCs of healthy volunteers of IFNalpha signal pathway, two groups of melanoma cell lines could be identified one with stronger suppression (low pSTAT-1 group) than the other (high pSTAT-1 group). Comparative global gene expression between two groups identified 6771 differential expression genes. This gene list indicated down regulation of IFNalpha signal in immune suppressive melanoma cells. To evaluate this gene list for predictive power on IFNalpha signal modulatory function, we analyzed gene expression 41 independent melanoma cell lines and heat map clusters these cell lines into two groups, one with strong immune suppressive function and other with less effect.

Publication Title

Melanoma NOS1 expression promotes dysfunctional IFN signaling.

Sample Metadata Fields

Disease, Disease stage, Cell line

View Samples
accession-icon GSE4176
Genomic and expression profiling identifies Syk as a possible therapeutic target in mantle cell lymphoma
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Among B-cell lymphomas mantle cell lymphoma (MCL) has the worst prognosis. By using a combination of genomic and expression profiling (Affymetrix GeneChip Mapping 10k Xba131 and U133 set), we analysed 26 MCL samples to identify genes relevant to MCL pathogenesis and that could represent new therapeutic targets. Recurrent genomic deletions and gains were detected. Genes were identified as overexpressed in regions of DNA gain on 3q, 6p, 8q, 9q, 16p and 18q, including the cancer genes BCL2 and MYC. Among the transcripts with high correlation between DNA and RNA, we identified SYK, a tyrosine kinase involved in B-cell receptor signalling. SYK was amplified at DNA level, as validated by fluorescence in situ hybridisation (FISH) analysis, and overexpressed at both RNA and protein levels in the JeKo-1 cell line. Low-level amplification, with protein overexpression of Syk was demonstrated by FISH in a small subset of clinical samples. After treatment with low doses of the Syk inhibitor piceatannol, cell proliferation arrest and apoptosis were induced in the cell line overexpressing Syk, while cells expressing low levels of Syk were much less sensitive. A combination of genomic and expression profiling suggested Syk inhibition as a new therapeutic strategy to be explored in lymphomas.

Publication Title

Genomic and expression profiling identifies the B-cell associated tyrosine kinase Syk as a possible therapeutic target in mantle cell lymphoma.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact